Metamath Proof Explorer


Theorem alephsing

Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if ( alephA ) < A , then ( alephA ) is singular. Conversely, if ( alephA ) is regular (i.e. weakly inaccessible), then ( alephA ) = A , so A has to be rather large (see alephfp ). Proposition 11.13 of TakeutiZaring p. 103. (Contributed by Mario Carneiro, 9-Mar-2013)

Ref Expression
Assertion alephsing LimAcfA=cfA

Proof

Step Hyp Ref Expression
1 alephfnon FnOn
2 fnfun FnOnFun
3 1 2 ax-mp Fun
4 simpl AVLimAAV
5 resfunexg FunAVAV
6 3 4 5 sylancr AVLimAAV
7 limelon AVLimAAOn
8 onss AOnAOn
9 7 8 syl AVLimAAOn
10 fnssres FnOnAOnAFnA
11 1 9 10 sylancr AVLimAAFnA
12 fvres yAAy=y
13 12 adantl AOnyAAy=y
14 alephord2i AOnyAyA
15 14 imp AOnyAyA
16 13 15 eqeltrd AOnyAAyA
17 7 16 sylan AVLimAyAAyA
18 17 ralrimiva AVLimAyAAyA
19 fnfvrnss AFnAyAAyAranAA
20 11 18 19 syl2anc AVLimAranAA
21 df-f A:AAAFnAranAA
22 11 20 21 sylanbrc AVLimAA:AA
23 alephsmo Smo
24 1 fndmi dom=On
25 7 24 eleqtrrdi AVLimAAdom
26 smores SmoAdomSmoA
27 23 25 26 sylancr AVLimASmoA
28 alephlim AVLimAA=yAy
29 28 eleq2d AVLimAxAxyAy
30 eliun xyAyyAxy
31 alephon yOn
32 31 onelssi xyxy
33 32 reximi yAxyyAxy
34 30 33 sylbi xyAyyAxy
35 29 34 syl6bi AVLimAxAyAxy
36 35 ralrimiv AVLimAxAyAxy
37 feq1 f=Af:AAA:AA
38 smoeq f=ASmofSmoA
39 fveq1 f=Afy=Ay
40 39 12 sylan9eq f=AyAfy=y
41 40 sseq2d f=AyAxfyxy
42 41 rexbidva f=AyAxfyyAxy
43 42 ralbidv f=AxAyAxfyxAyAxy
44 37 38 43 3anbi123d f=Af:AASmofxAyAxfyA:AASmoAxAyAxy
45 44 spcegv AVA:AASmoAxAyAxyff:AASmofxAyAxfy
46 45 imp AVA:AASmoAxAyAxyff:AASmofxAyAxfy
47 6 22 27 36 46 syl13anc AVLimAff:AASmofxAyAxfy
48 alephon AOn
49 cfcof AOnAOnff:AASmofxAyAxfycfA=cfA
50 48 7 49 sylancr AVLimAff:AASmofxAyAxfycfA=cfA
51 47 50 mpd AVLimAcfA=cfA
52 51 expcom LimAAVcfA=cfA
53 cf0 cf=
54 fvprc ¬AVA=
55 54 fveq2d ¬AVcfA=cf
56 fvprc ¬AVcfA=
57 53 55 56 3eqtr4a ¬AVcfA=cfA
58 52 57 pm2.61d1 LimAcfA=cfA