Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if ( alephA ) < A , then ( alephA ) is singular. Conversely, if ( alephA ) is regular (i.e. weakly inaccessible), then ( alephA ) = A , so A has to be rather large (see alephfp ). Proposition 11.13 of TakeutiZaring p. 103. (Contributed by Mario Carneiro, 9-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | alephsing | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon | |
|
2 | fnfun | |
|
3 | 1 2 | ax-mp | |
4 | simpl | |
|
5 | resfunexg | |
|
6 | 3 4 5 | sylancr | |
7 | limelon | |
|
8 | onss | |
|
9 | 7 8 | syl | |
10 | fnssres | |
|
11 | 1 9 10 | sylancr | |
12 | fvres | |
|
13 | 12 | adantl | |
14 | alephord2i | |
|
15 | 14 | imp | |
16 | 13 15 | eqeltrd | |
17 | 7 16 | sylan | |
18 | 17 | ralrimiva | |
19 | fnfvrnss | |
|
20 | 11 18 19 | syl2anc | |
21 | df-f | |
|
22 | 11 20 21 | sylanbrc | |
23 | alephsmo | |
|
24 | 1 | fndmi | |
25 | 7 24 | eleqtrrdi | |
26 | smores | |
|
27 | 23 25 26 | sylancr | |
28 | alephlim | |
|
29 | 28 | eleq2d | |
30 | eliun | |
|
31 | alephon | |
|
32 | 31 | onelssi | |
33 | 32 | reximi | |
34 | 30 33 | sylbi | |
35 | 29 34 | syl6bi | |
36 | 35 | ralrimiv | |
37 | feq1 | |
|
38 | smoeq | |
|
39 | fveq1 | |
|
40 | 39 12 | sylan9eq | |
41 | 40 | sseq2d | |
42 | 41 | rexbidva | |
43 | 42 | ralbidv | |
44 | 37 38 43 | 3anbi123d | |
45 | 44 | spcegv | |
46 | 45 | imp | |
47 | 6 22 27 36 46 | syl13anc | |
48 | alephon | |
|
49 | cfcof | |
|
50 | 48 7 49 | sylancr | |
51 | 47 50 | mpd | |
52 | 51 | expcom | |
53 | cf0 | |
|
54 | fvprc | |
|
55 | 54 | fveq2d | |
56 | fvprc | |
|
57 | 53 55 56 | 3eqtr4a | |
58 | 52 57 | pm2.61d1 | |