Description: If there is no distance between A and B , then A = B . Axiom A3 of Schwabhauser p. 10. (Contributed by Scott Fenton, 3-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | axcgrid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveecn | |
|
2 | subid | |
|
3 | 2 | sq0id | |
4 | 1 3 | syl | |
5 | 4 | sumeq2dv | |
6 | fzfid | |
|
7 | sumz | |
|
8 | 7 | olcs | |
9 | 6 8 | syl | |
10 | 5 9 | eqtrd | |
11 | 10 | 3ad2ant3 | |
12 | 11 | eqeq2d | |
13 | fzfid | |
|
14 | fveere | |
|
15 | 14 | adantlr | |
16 | fveere | |
|
17 | 16 | adantll | |
18 | 15 17 | resubcld | |
19 | 18 | resqcld | |
20 | 18 | sqge0d | |
21 | 13 19 20 | fsum00 | |
22 | fveecn | |
|
23 | fveecn | |
|
24 | subcl | |
|
25 | sqeq0 | |
|
26 | 24 25 | syl | |
27 | subeq0 | |
|
28 | 26 27 | bitrd | |
29 | 22 23 28 | syl2an | |
30 | 29 | anandirs | |
31 | 30 | ralbidva | |
32 | 21 31 | bitrd | |
33 | 32 | 3adant3 | |
34 | 12 33 | bitrd | |
35 | simp1 | |
|
36 | simp2 | |
|
37 | simp3 | |
|
38 | brcgr | |
|
39 | 35 36 37 37 38 | syl22anc | |
40 | eqeefv | |
|
41 | 40 | 3adant3 | |
42 | 34 39 41 | 3bitr4d | |
43 | 42 | biimpd | |
44 | 43 | adantl | |