Metamath Proof Explorer


Theorem axcgrid

Description: If there is no distance between A and B , then A = B . Axiom A3 of Schwabhauser p. 10. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion axcgrid NA𝔼NB𝔼NC𝔼NABCgrCCA=B

Proof

Step Hyp Ref Expression
1 fveecn C𝔼Ni1NCi
2 subid CiCiCi=0
3 2 sq0id CiCiCi2=0
4 1 3 syl C𝔼Ni1NCiCi2=0
5 4 sumeq2dv C𝔼Ni=1NCiCi2=i=1N0
6 fzfid C𝔼N1NFin
7 sumz 1N11NFini=1N0=0
8 7 olcs 1NFini=1N0=0
9 6 8 syl C𝔼Ni=1N0=0
10 5 9 eqtrd C𝔼Ni=1NCiCi2=0
11 10 3ad2ant3 A𝔼NB𝔼NC𝔼Ni=1NCiCi2=0
12 11 eqeq2d A𝔼NB𝔼NC𝔼Ni=1NAiBi2=i=1NCiCi2i=1NAiBi2=0
13 fzfid A𝔼NB𝔼N1NFin
14 fveere A𝔼Ni1NAi
15 14 adantlr A𝔼NB𝔼Ni1NAi
16 fveere B𝔼Ni1NBi
17 16 adantll A𝔼NB𝔼Ni1NBi
18 15 17 resubcld A𝔼NB𝔼Ni1NAiBi
19 18 resqcld A𝔼NB𝔼Ni1NAiBi2
20 18 sqge0d A𝔼NB𝔼Ni1N0AiBi2
21 13 19 20 fsum00 A𝔼NB𝔼Ni=1NAiBi2=0i1NAiBi2=0
22 fveecn A𝔼Ni1NAi
23 fveecn B𝔼Ni1NBi
24 subcl AiBiAiBi
25 sqeq0 AiBiAiBi2=0AiBi=0
26 24 25 syl AiBiAiBi2=0AiBi=0
27 subeq0 AiBiAiBi=0Ai=Bi
28 26 27 bitrd AiBiAiBi2=0Ai=Bi
29 22 23 28 syl2an A𝔼Ni1NB𝔼Ni1NAiBi2=0Ai=Bi
30 29 anandirs A𝔼NB𝔼Ni1NAiBi2=0Ai=Bi
31 30 ralbidva A𝔼NB𝔼Ni1NAiBi2=0i1NAi=Bi
32 21 31 bitrd A𝔼NB𝔼Ni=1NAiBi2=0i1NAi=Bi
33 32 3adant3 A𝔼NB𝔼NC𝔼Ni=1NAiBi2=0i1NAi=Bi
34 12 33 bitrd A𝔼NB𝔼NC𝔼Ni=1NAiBi2=i=1NCiCi2i1NAi=Bi
35 simp1 A𝔼NB𝔼NC𝔼NA𝔼N
36 simp2 A𝔼NB𝔼NC𝔼NB𝔼N
37 simp3 A𝔼NB𝔼NC𝔼NC𝔼N
38 brcgr A𝔼NB𝔼NC𝔼NC𝔼NABCgrCCi=1NAiBi2=i=1NCiCi2
39 35 36 37 37 38 syl22anc A𝔼NB𝔼NC𝔼NABCgrCCi=1NAiBi2=i=1NCiCi2
40 eqeefv A𝔼NB𝔼NA=Bi1NAi=Bi
41 40 3adant3 A𝔼NB𝔼NC𝔼NA=Bi1NAi=Bi
42 34 39 41 3bitr4d A𝔼NB𝔼NC𝔼NABCgrCCA=B
43 42 biimpd A𝔼NB𝔼NC𝔼NABCgrCCA=B
44 43 adantl NA𝔼NB𝔼NC𝔼NABCgrCCA=B