Metamath Proof Explorer


Theorem baerlem5abmN

Description: An equality that holds when X , Y , Z are independent (non-colinear) vectors. Subtraction versions of first and second equations of part (5) in Baer p. 46, conjoined to share commonality in their proofs. TODO: Delete if not needed. (Contributed by NM, 24-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses baerlem3.v V=BaseW
baerlem3.m -˙=-W
baerlem3.o 0˙=0W
baerlem3.s ˙=LSSumW
baerlem3.n N=LSpanW
baerlem3.w φWLVec
baerlem3.x φXV
baerlem3.c φ¬XNYZ
baerlem3.d φNYNZ
baerlem3.y φYV0˙
baerlem3.z φZV0˙
baerlem5a.p +˙=+W
Assertion baerlem5abmN φNX-˙Y-˙Z=NX-˙Y˙NZNX+˙Z˙NYNY-˙Z=NY˙NZNX-˙Y-˙Z˙NX

Proof

Step Hyp Ref Expression
1 baerlem3.v V=BaseW
2 baerlem3.m -˙=-W
3 baerlem3.o 0˙=0W
4 baerlem3.s ˙=LSSumW
5 baerlem3.n N=LSpanW
6 baerlem3.w φWLVec
7 baerlem3.x φXV
8 baerlem3.c φ¬XNYZ
9 baerlem3.d φNYNZ
10 baerlem3.y φYV0˙
11 baerlem3.z φZV0˙
12 baerlem5a.p +˙=+W
13 10 eldifad φYV
14 11 eldifad φZV
15 eqid invgW=invgW
16 1 12 15 2 grpsubval YVZVY-˙Z=Y+˙invgWZ
17 13 14 16 syl2anc φY-˙Z=Y+˙invgWZ
18 17 oveq2d φX-˙Y-˙Z=X-˙Y+˙invgWZ
19 18 sneqd φX-˙Y-˙Z=X-˙Y+˙invgWZ
20 19 fveq2d φNX-˙Y-˙Z=NX-˙Y+˙invgWZ
21 lveclmod WLVecWLMod
22 6 21 syl φWLMod
23 1 15 lmodvnegcl WLModZVinvgWZV
24 22 14 23 syl2anc φinvgWZV
25 eqid LSubSpW=LSubSpW
26 1 25 5 22 13 14 lspprcl φNYZLSubSpW
27 3 25 22 26 7 8 lssneln0 φXV0˙
28 1 5 6 7 13 14 8 lspindpi φNXNYNXNZ
29 28 simpld φNXNY
30 1 3 5 6 27 13 29 lspsnne1 φ¬XNY
31 9 necomd φNZNY
32 1 3 5 6 11 13 31 lspsnne1 φ¬ZNY
33 1 5 6 7 14 13 32 8 lspexchn2 φ¬ZNYX
34 lmodgrp WLModWGrp
35 6 21 34 3syl φWGrp
36 35 adantr φinvgWZNYXWGrp
37 14 adantr φinvgWZNYXZV
38 1 15 grpinvinv WGrpZVinvgWinvgWZ=Z
39 36 37 38 syl2anc φinvgWZNYXinvgWinvgWZ=Z
40 22 adantr φinvgWZNYXWLMod
41 1 25 5 22 13 7 lspprcl φNYXLSubSpW
42 41 adantr φinvgWZNYXNYXLSubSpW
43 simpr φinvgWZNYXinvgWZNYX
44 25 15 lssvnegcl WLModNYXLSubSpWinvgWZNYXinvgWinvgWZNYX
45 40 42 43 44 syl3anc φinvgWZNYXinvgWinvgWZNYX
46 39 45 eqeltrrd φinvgWZNYXZNYX
47 33 46 mtand φ¬invgWZNYX
48 1 5 6 24 7 13 30 47 lspexchn2 φ¬XNYinvgWZ
49 1 15 5 lspsnneg WLModZVNinvgWZ=NZ
50 22 14 49 syl2anc φNinvgWZ=NZ
51 9 50 neeqtrrd φNYNinvgWZ
52 1 3 15 grpinvnzcl WGrpZV0˙invgWZV0˙
53 35 11 52 syl2anc φinvgWZV0˙
54 1 2 3 4 5 6 7 48 51 10 53 12 baerlem5a φNX-˙Y+˙invgWZ=NX-˙Y˙NinvgWZNX-˙invgWZ˙NY
55 50 oveq2d φNX-˙Y˙NinvgWZ=NX-˙Y˙NZ
56 1 12 2 15 35 7 14 grpsubinv φX-˙invgWZ=X+˙Z
57 56 sneqd φX-˙invgWZ=X+˙Z
58 57 fveq2d φNX-˙invgWZ=NX+˙Z
59 58 oveq1d φNX-˙invgWZ˙NY=NX+˙Z˙NY
60 55 59 ineq12d φNX-˙Y˙NinvgWZNX-˙invgWZ˙NY=NX-˙Y˙NZNX+˙Z˙NY
61 20 54 60 3eqtrd φNX-˙Y-˙Z=NX-˙Y˙NZNX+˙Z˙NY
62 17 sneqd φY-˙Z=Y+˙invgWZ
63 62 fveq2d φNY-˙Z=NY+˙invgWZ
64 1 2 3 4 5 6 7 48 51 10 53 12 baerlem5b φNY+˙invgWZ=NY˙NinvgWZNX-˙Y+˙invgWZ˙NX
65 50 oveq2d φNY˙NinvgWZ=NY˙NZ
66 17 eqcomd φY+˙invgWZ=Y-˙Z
67 66 oveq2d φX-˙Y+˙invgWZ=X-˙Y-˙Z
68 67 sneqd φX-˙Y+˙invgWZ=X-˙Y-˙Z
69 68 fveq2d φNX-˙Y+˙invgWZ=NX-˙Y-˙Z
70 69 oveq1d φNX-˙Y+˙invgWZ˙NX=NX-˙Y-˙Z˙NX
71 65 70 ineq12d φNY˙NinvgWZNX-˙Y+˙invgWZ˙NX=NY˙NZNX-˙Y-˙Z˙NX
72 63 64 71 3eqtrd φNY-˙Z=NY˙NZNX-˙Y-˙Z˙NX
73 61 72 jca φNX-˙Y-˙Z=NX-˙Y˙NZNX+˙Z˙NYNY-˙Z=NY˙NZNX-˙Y-˙Z˙NX