| Step |
Hyp |
Ref |
Expression |
| 1 |
|
baerlem3.v |
|
| 2 |
|
baerlem3.m |
|
| 3 |
|
baerlem3.o |
|
| 4 |
|
baerlem3.s |
|
| 5 |
|
baerlem3.n |
|
| 6 |
|
baerlem3.w |
|
| 7 |
|
baerlem3.x |
|
| 8 |
|
baerlem3.c |
|
| 9 |
|
baerlem3.d |
|
| 10 |
|
baerlem3.y |
|
| 11 |
|
baerlem3.z |
|
| 12 |
|
baerlem3.p |
|
| 13 |
|
baerlem3.t |
|
| 14 |
|
baerlem3.r |
|
| 15 |
|
baerlem3.b |
|
| 16 |
|
baerlem3.a |
|
| 17 |
|
baerlem3.l |
|
| 18 |
|
baerlem3.q |
|
| 19 |
|
baerlem3.i |
|
| 20 |
|
lveclmod |
|
| 21 |
6 20
|
syl |
|
| 22 |
|
lmodabl |
|
| 23 |
21 22
|
syl |
|
| 24 |
10
|
eldifad |
|
| 25 |
11
|
eldifad |
|
| 26 |
1 12 2 23 7 24 25
|
ablsubsub4 |
|
| 27 |
26
|
sneqd |
|
| 28 |
27
|
fveq2d |
|
| 29 |
1 2
|
lmodvsubcl |
|
| 30 |
21 7 24 29
|
syl3anc |
|
| 31 |
1 2 4 5
|
lspsntrim |
|
| 32 |
21 30 25 31
|
syl3anc |
|
| 33 |
28 32
|
eqsstrrd |
|
| 34 |
1 2 23 7 25 24
|
ablsub32 |
|
| 35 |
34 26
|
eqtrd |
|
| 36 |
35
|
sneqd |
|
| 37 |
36
|
fveq2d |
|
| 38 |
1 2
|
lmodvsubcl |
|
| 39 |
21 7 25 38
|
syl3anc |
|
| 40 |
1 2 4 5
|
lspsntrim |
|
| 41 |
21 39 24 40
|
syl3anc |
|
| 42 |
37 41
|
eqsstrrd |
|
| 43 |
33 42
|
ssind |
|
| 44 |
|
elin |
|
| 45 |
1 12 14 15 13 4 5 21 30 25
|
lsmspsn |
|
| 46 |
1 12 14 15 13 4 5 21 39 24
|
lsmspsn |
|
| 47 |
45 46
|
anbi12d |
|
| 48 |
44 47
|
bitrid |
|
| 49 |
|
simp11 |
|
| 50 |
49 6
|
syl |
|
| 51 |
49 7
|
syl |
|
| 52 |
49 8
|
syl |
|
| 53 |
49 9
|
syl |
|
| 54 |
49 10
|
syl |
|
| 55 |
49 11
|
syl |
|
| 56 |
|
simp12l |
|
| 57 |
|
simp12r |
|
| 58 |
|
simp2l |
|
| 59 |
|
simp2r |
|
| 60 |
|
simp13 |
|
| 61 |
|
simp3 |
|
| 62 |
1 2 3 4 5 50 51 52 53 54 55 12 13 14 15 16 17 18 19 56 57 58 59 60 61
|
baerlem5alem1 |
|
| 63 |
49 21
|
syl |
|
| 64 |
1 12
|
lmodvacl |
|
| 65 |
21 24 25 64
|
syl3anc |
|
| 66 |
1 2
|
lmodvsubcl |
|
| 67 |
21 7 65 66
|
syl3anc |
|
| 68 |
49 67
|
syl |
|
| 69 |
1 13 14 15 5 63 56 68
|
ellspsni |
|
| 70 |
62 69
|
eqeltrd |
|
| 71 |
70
|
3exp |
|
| 72 |
71
|
rexlimdvv |
|
| 73 |
72
|
3exp |
|
| 74 |
73
|
rexlimdvv |
|
| 75 |
74
|
impd |
|
| 76 |
48 75
|
sylbid |
|
| 77 |
76
|
ssrdv |
|
| 78 |
43 77
|
eqssd |
|