Metamath Proof Explorer


Theorem ballotlem1c

Description: If the first vote is for A, the vote on the first tie is for B. (Contributed by Thierry Arnoux, 4-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
Assertion ballotlem1c COE1C¬ICC

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 eldifi COECO
10 9 ad2antrr COE1CICCCO
11 1 2 3 4 5 6 7 8 ballotlemiex COEIC1M+NFCIC=0
12 11 simpld COEIC1M+N
13 elfznn IC1M+NIC
14 12 13 syl COEIC
15 14 adantr COE1CIC
16 1 2 3 4 5 6 7 8 ballotlemii COE1CIC1
17 eluz2b3 IC2ICIC1
18 15 16 17 sylanbrc COE1CIC2
19 uz2m1nn IC2IC1
20 18 19 syl COE1CIC1
21 20 adantr COE1CICCIC1
22 elnnuz IC1IC11
23 22 biimpi IC1IC11
24 eluzfz1 IC1111IC1
25 20 23 24 3syl COE1C11IC1
26 25 adantr COE1CICC11IC1
27 0le1 01
28 1e0p1 1=0+1
29 27 28 breqtri 00+1
30 1nn 1
31 30 a1i COE1
32 1 2 3 4 5 9 31 ballotlemfp1 COE¬1CFC1=FC1111CFC1=FC11+1
33 32 simprd COE1CFC1=FC11+1
34 33 imp COE1CFC1=FC11+1
35 1m1e0 11=0
36 35 fveq2i FC11=FC0
37 36 oveq1i FC11+1=FC0+1
38 37 a1i COE1CFC11+1=FC0+1
39 1 2 3 4 5 ballotlemfval0 COFC0=0
40 9 39 syl COEFC0=0
41 40 adantr COE1CFC0=0
42 41 oveq1d COE1CFC0+1=0+1
43 34 38 42 3eqtrrd COE1C0+1=FC1
44 29 43 breqtrid COE1C0FC1
45 44 adantr COE1CICC0FC1
46 fveq2 i=1FCi=FC1
47 46 breq2d i=10FCi0FC1
48 47 rspcev 11IC10FC1i1IC10FCi
49 26 45 48 syl2anc COE1CICCi1IC10FCi
50 df-neg 1=01
51 1 2 3 4 5 9 14 ballotlemfp1 COE¬ICCFCIC=FCIC11ICCFCIC=FCIC1+1
52 51 simprd COEICCFCIC=FCIC1+1
53 52 imp COEICCFCIC=FCIC1+1
54 11 simprd COEFCIC=0
55 54 adantr COEICCFCIC=0
56 53 55 eqtr3d COEICCFCIC1+1=0
57 0cnd COEICC0
58 1cnd COEICC1
59 9 adantr COEICCCO
60 14 nnzd COEIC
61 60 adantr COEICCIC
62 1zzd COEICC1
63 61 62 zsubcld COEICCIC1
64 1 2 3 4 5 59 63 ballotlemfelz COEICCFCIC1
65 64 zcnd COEICCFCIC1
66 57 58 65 subadd2d COEICC01=FCIC1FCIC1+1=0
67 56 66 mpbird COEICC01=FCIC1
68 50 67 eqtrid COEICC1=FCIC1
69 neg1lt0 1<0
70 68 69 eqbrtrrdi COEICCFCIC1<0
71 70 adantlr COE1CICCFCIC1<0
72 1 2 3 4 5 10 21 49 71 ballotlemfcc COE1CICCk1IC1FCk=0
73 1 2 3 4 5 6 7 8 ballotlemimin COE¬k1IC1FCk=0
74 73 ad2antrr COE1CICC¬k1IC1FCk=0
75 72 74 pm2.65da COE1C¬ICC