| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bccval.c |
|
| 2 |
|
bccval.k |
|
| 3 |
1 2
|
bccval |
|
| 4 |
3
|
eqeq1d |
|
| 5 |
|
fallfaccl |
|
| 6 |
1 2 5
|
syl2anc |
|
| 7 |
|
faccl |
|
| 8 |
2 7
|
syl |
|
| 9 |
8
|
nncnd |
|
| 10 |
|
facne0 |
|
| 11 |
2 10
|
syl |
|
| 12 |
6 9 11
|
diveq0ad |
|
| 13 |
|
fallfacval |
|
| 14 |
1 2 13
|
syl2anc |
|
| 15 |
14
|
eqeq1d |
|
| 16 |
|
elfzuz3 |
|
| 17 |
16
|
adantl |
|
| 18 |
|
nn0uz |
|
| 19 |
|
elfznn0 |
|
| 20 |
19
|
adantl |
|
| 21 |
1
|
ad2antrr |
|
| 22 |
|
nn0cn |
|
| 23 |
22
|
adantl |
|
| 24 |
21 23
|
subcld |
|
| 25 |
1
|
ad2antrr |
|
| 26 |
|
eqcom |
|
| 27 |
26
|
biimpi |
|
| 28 |
27
|
adantl |
|
| 29 |
25 28
|
subeq0bd |
|
| 30 |
18 20 24 29
|
fprodeq0 |
|
| 31 |
17 30
|
mpdan |
|
| 32 |
31
|
ex |
|
| 33 |
|
fzfid |
|
| 34 |
1
|
ad2antrr |
|
| 35 |
|
elfznn0 |
|
| 36 |
35
|
nn0cnd |
|
| 37 |
36
|
adantl |
|
| 38 |
34 37
|
subcld |
|
| 39 |
|
nelne2 |
|
| 40 |
39
|
necomd |
|
| 41 |
40
|
ancoms |
|
| 42 |
41
|
adantll |
|
| 43 |
34 37 42
|
subne0d |
|
| 44 |
33 38 43
|
fprodn0 |
|
| 45 |
44
|
ex |
|
| 46 |
45
|
necon4bd |
|
| 47 |
32 46
|
impbid |
|
| 48 |
15 47
|
bitr4d |
|
| 49 |
4 12 48
|
3bitrd |
|