Metamath Proof Explorer


Theorem bcc0

Description: The generalized binomial coefficient C choose K is zero iff C is an integer between zero and ( K - 1 ) inclusive. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses bccval.c φC
bccval.k φK0
Assertion bcc0 φCC𝑐K=0C0K1

Proof

Step Hyp Ref Expression
1 bccval.c φC
2 bccval.k φK0
3 1 2 bccval φCC𝑐K=CK_K!
4 3 eqeq1d φCC𝑐K=0CK_K!=0
5 fallfaccl CK0CK_
6 1 2 5 syl2anc φCK_
7 faccl K0K!
8 2 7 syl φK!
9 8 nncnd φK!
10 facne0 K0K!0
11 2 10 syl φK!0
12 6 9 11 diveq0ad φCK_K!=0CK_=0
13 fallfacval CK0CK_=k=0K1Ck
14 1 2 13 syl2anc φCK_=k=0K1Ck
15 14 eqeq1d φCK_=0k=0K1Ck=0
16 elfzuz3 C0K1K1C
17 16 adantl φC0K1K1C
18 nn0uz 0=0
19 elfznn0 C0K1C0
20 19 adantl φC0K1C0
21 1 ad2antrr φC0K1k0C
22 nn0cn k0k
23 22 adantl φC0K1k0k
24 21 23 subcld φC0K1k0Ck
25 1 ad2antrr φC0K1k=CC
26 eqcom k=CC=k
27 26 biimpi k=CC=k
28 27 adantl φC0K1k=CC=k
29 25 28 subeq0bd φC0K1k=CCk=0
30 18 20 24 29 fprodeq0 φC0K1K1Ck=0K1Ck=0
31 17 30 mpdan φC0K1k=0K1Ck=0
32 31 ex φC0K1k=0K1Ck=0
33 fzfid φ¬C0K10K1Fin
34 1 ad2antrr φ¬C0K1k0K1C
35 elfznn0 k0K1k0
36 35 nn0cnd k0K1k
37 36 adantl φ¬C0K1k0K1k
38 34 37 subcld φ¬C0K1k0K1Ck
39 nelne2 k0K1¬C0K1kC
40 39 necomd k0K1¬C0K1Ck
41 40 ancoms ¬C0K1k0K1Ck
42 41 adantll φ¬C0K1k0K1Ck
43 34 37 42 subne0d φ¬C0K1k0K1Ck0
44 33 38 43 fprodn0 φ¬C0K1k=0K1Ck0
45 44 ex φ¬C0K1k=0K1Ck0
46 45 necon4bd φk=0K1Ck=0C0K1
47 32 46 impbid φC0K1k=0K1Ck=0
48 15 47 bitr4d φCK_=0C0K1
49 4 12 48 3bitrd φCC𝑐K=0C0K1