Metamath Proof Explorer


Theorem catccatid

Description: Lemma for catccat . (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catccatid.c C=CatCatU
catccatid.b B=BaseC
Assertion catccatid UVCCatIdC=xBidfuncx

Proof

Step Hyp Ref Expression
1 catccatid.c C=CatCatU
2 catccatid.b B=BaseC
3 2 a1i UVB=BaseC
4 eqidd UVHomC=HomC
5 eqidd UVcompC=compC
6 1 fvexi CV
7 6 a1i UVCV
8 biid wBxByBzBfwHomCxgxHomCyhyHomCzwBxByBzBfwHomCxgxHomCyhyHomCz
9 id UVUV
10 1 2 9 catcbas UVB=UCat
11 inss2 UCatCat
12 10 11 eqsstrdi UVBCat
13 12 sselda UVxBxCat
14 eqid idfuncx=idfuncx
15 14 idfucl xCatidfuncxxFuncx
16 13 15 syl UVxBidfuncxxFuncx
17 simpl UVxBUV
18 eqid HomC=HomC
19 simpr UVxBxB
20 1 2 17 18 19 19 catchom UVxBxHomCx=xFuncx
21 16 20 eleqtrrd UVxBidfuncxxHomCx
22 simpl UVwBxByBzBfwHomCxgxHomCyhyHomCzUV
23 eqid compC=compC
24 simpr1l UVwBxByBzBfwHomCxgxHomCyhyHomCzwB
25 simpr1r UVwBxByBzBfwHomCxgxHomCyhyHomCzxB
26 simpr31 UVwBxByBzBfwHomCxgxHomCyhyHomCzfwHomCx
27 1 2 22 18 24 25 catchom UVwBxByBzBfwHomCxgxHomCyhyHomCzwHomCx=wFuncx
28 26 27 eleqtrd UVwBxByBzBfwHomCxgxHomCyhyHomCzfwFuncx
29 25 16 syldan UVwBxByBzBfwHomCxgxHomCyhyHomCzidfuncxxFuncx
30 1 2 22 23 24 25 25 28 29 catcco UVwBxByBzBfwHomCxgxHomCyhyHomCzidfuncxwxcompCxf=idfuncxfuncf
31 28 14 cofulid UVwBxByBzBfwHomCxgxHomCyhyHomCzidfuncxfuncf=f
32 30 31 eqtrd UVwBxByBzBfwHomCxgxHomCyhyHomCzidfuncxwxcompCxf=f
33 simpr2l UVwBxByBzBfwHomCxgxHomCyhyHomCzyB
34 simpr32 UVwBxByBzBfwHomCxgxHomCyhyHomCzgxHomCy
35 1 2 22 18 25 33 catchom UVwBxByBzBfwHomCxgxHomCyhyHomCzxHomCy=xFuncy
36 34 35 eleqtrd UVwBxByBzBfwHomCxgxHomCyhyHomCzgxFuncy
37 1 2 22 23 25 25 33 29 36 catcco UVwBxByBzBfwHomCxgxHomCyhyHomCzgxxcompCyidfuncx=gfuncidfuncx
38 36 14 cofurid UVwBxByBzBfwHomCxgxHomCyhyHomCzgfuncidfuncx=g
39 37 38 eqtrd UVwBxByBzBfwHomCxgxHomCyhyHomCzgxxcompCyidfuncx=g
40 28 36 cofucl UVwBxByBzBfwHomCxgxHomCyhyHomCzgfuncfwFuncy
41 1 2 22 23 24 25 33 28 36 catcco UVwBxByBzBfwHomCxgxHomCyhyHomCzgwxcompCyf=gfuncf
42 1 2 22 18 24 33 catchom UVwBxByBzBfwHomCxgxHomCyhyHomCzwHomCy=wFuncy
43 40 41 42 3eltr4d UVwBxByBzBfwHomCxgxHomCyhyHomCzgwxcompCyfwHomCy
44 simpr33 UVwBxByBzBfwHomCxgxHomCyhyHomCzhyHomCz
45 simpr2r UVwBxByBzBfwHomCxgxHomCyhyHomCzzB
46 1 2 22 18 33 45 catchom UVwBxByBzBfwHomCxgxHomCyhyHomCzyHomCz=yFuncz
47 44 46 eleqtrd UVwBxByBzBfwHomCxgxHomCyhyHomCzhyFuncz
48 28 36 47 cofuass UVwBxByBzBfwHomCxgxHomCyhyHomCzhfuncgfuncf=hfuncgfuncf
49 36 47 cofucl UVwBxByBzBfwHomCxgxHomCyhyHomCzhfuncgxFuncz
50 1 2 22 23 24 25 45 28 49 catcco UVwBxByBzBfwHomCxgxHomCyhyHomCzhfuncgwxcompCzf=hfuncgfuncf
51 1 2 22 23 24 33 45 40 47 catcco UVwBxByBzBfwHomCxgxHomCyhyHomCzhwycompCzgfuncf=hfuncgfuncf
52 48 50 51 3eqtr4d UVwBxByBzBfwHomCxgxHomCyhyHomCzhfuncgwxcompCzf=hwycompCzgfuncf
53 1 2 22 23 25 33 45 36 47 catcco UVwBxByBzBfwHomCxgxHomCyhyHomCzhxycompCzg=hfuncg
54 53 oveq1d UVwBxByBzBfwHomCxgxHomCyhyHomCzhxycompCzgwxcompCzf=hfuncgwxcompCzf
55 41 oveq2d UVwBxByBzBfwHomCxgxHomCyhyHomCzhwycompCzgwxcompCyf=hwycompCzgfuncf
56 52 54 55 3eqtr4d UVwBxByBzBfwHomCxgxHomCyhyHomCzhxycompCzgwxcompCzf=hwycompCzgwxcompCyf
57 3 4 5 7 8 21 32 39 43 56 iscatd2 UVCCatIdC=xBidfuncx