Description: Lemma for catccat . (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | catccatid.c | |
|
catccatid.b | |
||
Assertion | catccatid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catccatid.c | |
|
2 | catccatid.b | |
|
3 | 2 | a1i | |
4 | eqidd | |
|
5 | eqidd | |
|
6 | 1 | fvexi | |
7 | 6 | a1i | |
8 | biid | |
|
9 | id | |
|
10 | 1 2 9 | catcbas | |
11 | inss2 | |
|
12 | 10 11 | eqsstrdi | |
13 | 12 | sselda | |
14 | eqid | |
|
15 | 14 | idfucl | |
16 | 13 15 | syl | |
17 | simpl | |
|
18 | eqid | |
|
19 | simpr | |
|
20 | 1 2 17 18 19 19 | catchom | |
21 | 16 20 | eleqtrrd | |
22 | simpl | |
|
23 | eqid | |
|
24 | simpr1l | |
|
25 | simpr1r | |
|
26 | simpr31 | |
|
27 | 1 2 22 18 24 25 | catchom | |
28 | 26 27 | eleqtrd | |
29 | 25 16 | syldan | |
30 | 1 2 22 23 24 25 25 28 29 | catcco | |
31 | 28 14 | cofulid | |
32 | 30 31 | eqtrd | |
33 | simpr2l | |
|
34 | simpr32 | |
|
35 | 1 2 22 18 25 33 | catchom | |
36 | 34 35 | eleqtrd | |
37 | 1 2 22 23 25 25 33 29 36 | catcco | |
38 | 36 14 | cofurid | |
39 | 37 38 | eqtrd | |
40 | 28 36 | cofucl | |
41 | 1 2 22 23 24 25 33 28 36 | catcco | |
42 | 1 2 22 18 24 33 | catchom | |
43 | 40 41 42 | 3eltr4d | |
44 | simpr33 | |
|
45 | simpr2r | |
|
46 | 1 2 22 18 33 45 | catchom | |
47 | 44 46 | eleqtrd | |
48 | 28 36 47 | cofuass | |
49 | 36 47 | cofucl | |
50 | 1 2 22 23 24 25 45 28 49 | catcco | |
51 | 1 2 22 23 24 33 45 40 47 | catcco | |
52 | 48 50 51 | 3eqtr4d | |
53 | 1 2 22 23 25 33 45 36 47 | catcco | |
54 | 53 | oveq1d | |
55 | 41 | oveq2d | |
56 | 52 54 55 | 3eqtr4d | |
57 | 3 4 5 7 8 21 32 39 43 56 | iscatd2 | |