Metamath Proof Explorer


Theorem caublcls

Description: The convergent point of a sequence of nested balls is in the closures of any of the balls (i.e. it is in the intersection of the closures). Indeed, it is the only point in the intersection because a metric space is Hausdorff, but we don't prove this here. (Contributed by Mario Carneiro, 21-Jan-2014) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses caubl.2 φD∞MetX
caubl.3 φF:X×+
caubl.4 φnballDFn+1ballDFn
caublcls.6 J=MetOpenD
Assertion caublcls φ1stFtJPAPclsJballDFA

Proof

Step Hyp Ref Expression
1 caubl.2 φD∞MetX
2 caubl.3 φF:X×+
3 caubl.4 φnballDFn+1ballDFn
4 caublcls.6 J=MetOpenD
5 eqid A=A
6 1 3ad2ant1 φ1stFtJPAD∞MetX
7 4 mopntopon D∞MetXJTopOnX
8 6 7 syl φ1stFtJPAJTopOnX
9 simp3 φ1stFtJPAA
10 9 nnzd φ1stFtJPAA
11 simp2 φ1stFtJPA1stFtJP
12 2fveq3 r=AballDFr=ballDFA
13 12 sseq1d r=AballDFrballDFAballDFAballDFA
14 13 imbi2d r=AφAballDFrballDFAφAballDFAballDFA
15 2fveq3 r=kballDFr=ballDFk
16 15 sseq1d r=kballDFrballDFAballDFkballDFA
17 16 imbi2d r=kφAballDFrballDFAφAballDFkballDFA
18 2fveq3 r=k+1ballDFr=ballDFk+1
19 18 sseq1d r=k+1ballDFrballDFAballDFk+1ballDFA
20 19 imbi2d r=k+1φAballDFrballDFAφAballDFk+1ballDFA
21 ssid ballDFAballDFA
22 21 2a1i AφAballDFAballDFA
23 eluznn AkAk
24 fvoveq1 n=kFn+1=Fk+1
25 24 fveq2d n=kballDFn+1=ballDFk+1
26 2fveq3 n=kballDFn=ballDFk
27 25 26 sseq12d n=kballDFn+1ballDFnballDFk+1ballDFk
28 27 rspccva nballDFn+1ballDFnkballDFk+1ballDFk
29 3 23 28 syl2an φAkAballDFk+1ballDFk
30 29 anassrs φAkAballDFk+1ballDFk
31 sstr2 ballDFk+1ballDFkballDFkballDFAballDFk+1ballDFA
32 30 31 syl φAkAballDFkballDFAballDFk+1ballDFA
33 32 expcom kAφAballDFkballDFAballDFk+1ballDFA
34 33 a2d kAφAballDFkballDFAφAballDFk+1ballDFA
35 14 17 20 17 22 34 uzind4 kAφAballDFkballDFA
36 35 impcom φAkAballDFkballDFA
37 36 3adantl2 φ1stFtJPAkAballDFkballDFA
38 6 adantr φ1stFtJPAkAD∞MetX
39 simpl1 φ1stFtJPAkAφ
40 39 2 syl φ1stFtJPAkAF:X×+
41 23 3ad2antl3 φ1stFtJPAkAk
42 40 41 ffvelcdmd φ1stFtJPAkAFkX×+
43 xp1st FkX×+1stFkX
44 42 43 syl φ1stFtJPAkA1stFkX
45 xp2nd FkX×+2ndFk+
46 42 45 syl φ1stFtJPAkA2ndFk+
47 blcntr D∞MetX1stFkX2ndFk+1stFk1stFkballD2ndFk
48 38 44 46 47 syl3anc φ1stFtJPAkA1stFk1stFkballD2ndFk
49 fvco3 F:X×+k1stFk=1stFk
50 40 41 49 syl2anc φ1stFtJPAkA1stFk=1stFk
51 1st2nd2 FkX×+Fk=1stFk2ndFk
52 42 51 syl φ1stFtJPAkAFk=1stFk2ndFk
53 52 fveq2d φ1stFtJPAkAballDFk=ballD1stFk2ndFk
54 df-ov 1stFkballD2ndFk=ballD1stFk2ndFk
55 53 54 eqtr4di φ1stFtJPAkAballDFk=1stFkballD2ndFk
56 48 50 55 3eltr4d φ1stFtJPAkA1stFkballDFk
57 37 56 sseldd φ1stFtJPAkA1stFkballDFA
58 2 ffvelcdmda φAFAX×+
59 58 3adant2 φ1stFtJPAFAX×+
60 1st2nd2 FAX×+FA=1stFA2ndFA
61 59 60 syl φ1stFtJPAFA=1stFA2ndFA
62 61 fveq2d φ1stFtJPAballDFA=ballD1stFA2ndFA
63 df-ov 1stFAballD2ndFA=ballD1stFA2ndFA
64 62 63 eqtr4di φ1stFtJPAballDFA=1stFAballD2ndFA
65 xp1st FAX×+1stFAX
66 59 65 syl φ1stFtJPA1stFAX
67 xp2nd FAX×+2ndFA+
68 59 67 syl φ1stFtJPA2ndFA+
69 68 rpxrd φ1stFtJPA2ndFA*
70 blssm D∞MetX1stFAX2ndFA*1stFAballD2ndFAX
71 6 66 69 70 syl3anc φ1stFtJPA1stFAballD2ndFAX
72 64 71 eqsstrd φ1stFtJPAballDFAX
73 5 8 10 11 57 72 lmcls φ1stFtJPAPclsJballDFA