Metamath Proof Explorer


Theorem ccatsymb

Description: The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018) (Proof shortened by AV, 24-Nov-2018)

Ref Expression
Assertion ccatsymb AWordVBWordVIA++BI=ifI<AAIBIA

Proof

Step Hyp Ref Expression
1 simprll 0IAWordVBWordVII<AAWordVBWordV
2 simpr AWordVBWordVII<AI<A
3 2 anim2i 0IAWordVBWordVII<A0II<A
4 simpr AWordVBWordVII
5 0zd AWordVBWordVI0
6 lencl AWordVA0
7 6 nn0zd AWordVA
8 7 ad2antrr AWordVBWordVIA
9 elfzo I0AI0..^A0II<A
10 4 5 8 9 syl3anc AWordVBWordVII0..^A0II<A
11 10 ad2antrl 0IAWordVBWordVII<AI0..^A0II<A
12 3 11 mpbird 0IAWordVBWordVII<AI0..^A
13 df-3an AWordVBWordVI0..^AAWordVBWordVI0..^A
14 1 12 13 sylanbrc 0IAWordVBWordVII<AAWordVBWordVI0..^A
15 ccatval1 AWordVBWordVI0..^AA++BI=AI
16 15 eqcomd AWordVBWordVI0..^AAI=A++BI
17 14 16 syl 0IAWordVBWordVII<AAI=A++BI
18 17 ex 0IAWordVBWordVII<AAI=A++BI
19 zre II
20 0red I0
21 19 20 ltnled II<0¬0I
22 21 adantl AWordVBWordVII<0¬0I
23 simpl AWordVBWordVAWordV
24 23 anim1i AWordVBWordVIAWordVI
25 24 adantr AWordVBWordVII<0AWordVI
26 animorrl AWordVBWordVII<0I<0AI
27 wrdsymb0 AWordVII<0AIAI=
28 25 26 27 sylc AWordVBWordVII<0AI=
29 ccatcl AWordVBWordVA++BWordV
30 29 anim1i AWordVBWordVIA++BWordVI
31 30 adantr AWordVBWordVII<0A++BWordVI
32 animorrl AWordVBWordVII<0I<0A++BI
33 wrdsymb0 A++BWordVII<0A++BIA++BI=
34 31 32 33 sylc AWordVBWordVII<0A++BI=
35 28 34 eqtr4d AWordVBWordVII<0AI=A++BI
36 35 ex AWordVBWordVII<0AI=A++BI
37 22 36 sylbird AWordVBWordVI¬0IAI=A++BI
38 37 com12 ¬0IAWordVBWordVIAI=A++BI
39 38 adantrd ¬0IAWordVBWordVII<AAI=A++BI
40 18 39 pm2.61i AWordVBWordVII<AAI=A++BI
41 simprll I<A+BAWordVBWordVI¬I<AAWordVBWordV
42 id I<A+BI<A+B
43 6 nn0red AWordVA
44 lenlt AIAI¬I<A
45 43 19 44 syl2an AWordVIAI¬I<A
46 45 adantlr AWordVBWordVIAI¬I<A
47 46 biimpar AWordVBWordVI¬I<AAI
48 42 47 anim12ci I<A+BAWordVBWordVI¬I<AAII<A+B
49 lencl BWordVB0
50 49 nn0zd BWordVB
51 zaddcl ABA+B
52 7 50 51 syl2an AWordVBWordVA+B
53 52 adantr AWordVBWordVIA+B
54 elfzo IAA+BIA..^A+BAII<A+B
55 4 8 53 54 syl3anc AWordVBWordVIIA..^A+BAII<A+B
56 55 ad2antrl I<A+BAWordVBWordVI¬I<AIA..^A+BAII<A+B
57 48 56 mpbird I<A+BAWordVBWordVI¬I<AIA..^A+B
58 df-3an AWordVBWordVIA..^A+BAWordVBWordVIA..^A+B
59 41 57 58 sylanbrc I<A+BAWordVBWordVI¬I<AAWordVBWordVIA..^A+B
60 ccatval2 AWordVBWordVIA..^A+BA++BI=BIA
61 60 eqcomd AWordVBWordVIA..^A+BBIA=A++BI
62 59 61 syl I<A+BAWordVBWordVI¬I<ABIA=A++BI
63 62 ex I<A+BAWordVBWordVI¬I<ABIA=A++BI
64 49 nn0red BWordVB
65 readdcl ABA+B
66 43 64 65 syl2an AWordVBWordVA+B
67 lenlt A+BIA+BI¬I<A+B
68 66 19 67 syl2an AWordVBWordVIA+BI¬I<A+B
69 simplr AWordVBWordVIBWordV
70 simpr AWordVII
71 7 adantr AWordVIA
72 70 71 zsubcld AWordVIIA
73 72 adantlr AWordVBWordVIIA
74 69 73 jca AWordVBWordVIBWordVIA
75 74 adantr AWordVBWordVIA+BIBWordVIA
76 43 ad2antrr AWordVBWordVIA
77 64 ad2antlr AWordVBWordVIB
78 19 adantl AWordVBWordVII
79 76 77 78 leaddsub2d AWordVBWordVIA+BIBIA
80 79 biimpa AWordVBWordVIA+BIBIA
81 80 olcd AWordVBWordVIA+BIIA<0BIA
82 wrdsymb0 BWordVIAIA<0BIABIA=
83 75 81 82 sylc AWordVBWordVIA+BIBIA=
84 30 adantr AWordVBWordVIA+BIA++BWordVI
85 ccatlen AWordVBWordVA++B=A+B
86 85 ad2antrr AWordVBWordVIA+BIA++B=A+B
87 simpr AWordVBWordVIA+BIA+BI
88 86 87 eqbrtrd AWordVBWordVIA+BIA++BI
89 88 olcd AWordVBWordVIA+BII<0A++BI
90 84 89 33 sylc AWordVBWordVIA+BIA++BI=
91 83 90 eqtr4d AWordVBWordVIA+BIBIA=A++BI
92 91 ex AWordVBWordVIA+BIBIA=A++BI
93 68 92 sylbird AWordVBWordVI¬I<A+BBIA=A++BI
94 93 com12 ¬I<A+BAWordVBWordVIBIA=A++BI
95 94 adantrd ¬I<A+BAWordVBWordVI¬I<ABIA=A++BI
96 63 95 pm2.61i AWordVBWordVI¬I<ABIA=A++BI
97 40 96 ifeqda AWordVBWordVIifI<AAIBIA=A++BI
98 97 eqcomd AWordVBWordVIA++BI=ifI<AAIBIA
99 98 3impa AWordVBWordVIA++BI=ifI<AAIBIA