Description: Lemma for cdlemc . (Contributed by NM, 26-May-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemc3.l | |
|
cdlemc3.j | |
||
cdlemc3.m | |
||
cdlemc3.a | |
||
cdlemc3.h | |
||
cdlemc3.t | |
||
cdlemc3.r | |
||
Assertion | cdlemc6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemc3.l | |
|
2 | cdlemc3.j | |
|
3 | cdlemc3.m | |
|
4 | cdlemc3.a | |
|
5 | cdlemc3.h | |
|
6 | cdlemc3.t | |
|
7 | cdlemc3.r | |
|
8 | simp1l | |
|
9 | simp22l | |
|
10 | simp23l | |
|
11 | 2 4 | hlatjcom | |
12 | 8 9 10 11 | syl3anc | |
13 | 12 | oveq2d | |
14 | 8 | hllatd | |
15 | eqid | |
|
16 | 15 4 | atbase | |
17 | 10 16 | syl | |
18 | 15 4 | atbase | |
19 | 9 18 | syl | |
20 | 15 2 3 | latabs2 | |
21 | 14 17 19 20 | syl3anc | |
22 | 13 21 | eqtrd | |
23 | simp1 | |
|
24 | simp22 | |
|
25 | simp21 | |
|
26 | simp3 | |
|
27 | eqid | |
|
28 | 1 27 4 5 6 7 | trl0 | |
29 | 23 24 25 26 28 | syl112anc | |
30 | 29 | oveq2d | |
31 | hlol | |
|
32 | 8 31 | syl | |
33 | 15 2 27 | olj01 | |
34 | 32 17 33 | syl2anc | |
35 | 30 34 | eqtrd | |
36 | 26 | oveq1d | |
37 | 15 2 4 | hlatjcl | |
38 | 8 9 10 37 | syl3anc | |
39 | simp1r | |
|
40 | 15 5 | lhpbase | |
41 | 39 40 | syl | |
42 | 15 3 | latmcl | |
43 | 14 38 41 42 | syl3anc | |
44 | 15 2 | latjcom | |
45 | 14 19 43 44 | syl3anc | |
46 | 1 2 4 | hlatlej1 | |
47 | 8 9 10 46 | syl3anc | |
48 | 15 1 2 3 4 | atmod2i1 | |
49 | 8 9 38 41 47 48 | syl131anc | |
50 | eqid | |
|
51 | 1 2 50 4 5 | lhpjat1 | |
52 | 8 39 24 51 | syl21anc | |
53 | 52 | oveq2d | |
54 | 15 3 50 | olm11 | |
55 | 32 38 54 | syl2anc | |
56 | 49 53 55 | 3eqtrd | |
57 | 36 45 56 | 3eqtrd | |
58 | 35 57 | oveq12d | |
59 | 1 4 5 6 | ltrnateq | |
60 | 22 58 59 | 3eqtr4rd | |