Metamath Proof Explorer


Theorem cdlemc6

Description: Lemma for cdlemc . (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses cdlemc3.l ˙=K
cdlemc3.j ˙=joinK
cdlemc3.m ˙=meetK
cdlemc3.a A=AtomsK
cdlemc3.h H=LHypK
cdlemc3.t T=LTrnKW
cdlemc3.r R=trLKW
Assertion cdlemc6 KHLWHFTPA¬P˙WQA¬Q˙WFP=PFQ=Q˙RF˙FP˙P˙Q˙W

Proof

Step Hyp Ref Expression
1 cdlemc3.l ˙=K
2 cdlemc3.j ˙=joinK
3 cdlemc3.m ˙=meetK
4 cdlemc3.a A=AtomsK
5 cdlemc3.h H=LHypK
6 cdlemc3.t T=LTrnKW
7 cdlemc3.r R=trLKW
8 simp1l KHLWHFTPA¬P˙WQA¬Q˙WFP=PKHL
9 simp22l KHLWHFTPA¬P˙WQA¬Q˙WFP=PPA
10 simp23l KHLWHFTPA¬P˙WQA¬Q˙WFP=PQA
11 2 4 hlatjcom KHLPAQAP˙Q=Q˙P
12 8 9 10 11 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WFP=PP˙Q=Q˙P
13 12 oveq2d KHLWHFTPA¬P˙WQA¬Q˙WFP=PQ˙P˙Q=Q˙Q˙P
14 8 hllatd KHLWHFTPA¬P˙WQA¬Q˙WFP=PKLat
15 eqid BaseK=BaseK
16 15 4 atbase QAQBaseK
17 10 16 syl KHLWHFTPA¬P˙WQA¬Q˙WFP=PQBaseK
18 15 4 atbase PAPBaseK
19 9 18 syl KHLWHFTPA¬P˙WQA¬Q˙WFP=PPBaseK
20 15 2 3 latabs2 KLatQBaseKPBaseKQ˙Q˙P=Q
21 14 17 19 20 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WFP=PQ˙Q˙P=Q
22 13 21 eqtrd KHLWHFTPA¬P˙WQA¬Q˙WFP=PQ˙P˙Q=Q
23 simp1 KHLWHFTPA¬P˙WQA¬Q˙WFP=PKHLWH
24 simp22 KHLWHFTPA¬P˙WQA¬Q˙WFP=PPA¬P˙W
25 simp21 KHLWHFTPA¬P˙WQA¬Q˙WFP=PFT
26 simp3 KHLWHFTPA¬P˙WQA¬Q˙WFP=PFP=P
27 eqid 0.K=0.K
28 1 27 4 5 6 7 trl0 KHLWHPA¬P˙WFTFP=PRF=0.K
29 23 24 25 26 28 syl112anc KHLWHFTPA¬P˙WQA¬Q˙WFP=PRF=0.K
30 29 oveq2d KHLWHFTPA¬P˙WQA¬Q˙WFP=PQ˙RF=Q˙0.K
31 hlol KHLKOL
32 8 31 syl KHLWHFTPA¬P˙WQA¬Q˙WFP=PKOL
33 15 2 27 olj01 KOLQBaseKQ˙0.K=Q
34 32 17 33 syl2anc KHLWHFTPA¬P˙WQA¬Q˙WFP=PQ˙0.K=Q
35 30 34 eqtrd KHLWHFTPA¬P˙WQA¬Q˙WFP=PQ˙RF=Q
36 26 oveq1d KHLWHFTPA¬P˙WQA¬Q˙WFP=PFP˙P˙Q˙W=P˙P˙Q˙W
37 15 2 4 hlatjcl KHLPAQAP˙QBaseK
38 8 9 10 37 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WFP=PP˙QBaseK
39 simp1r KHLWHFTPA¬P˙WQA¬Q˙WFP=PWH
40 15 5 lhpbase WHWBaseK
41 39 40 syl KHLWHFTPA¬P˙WQA¬Q˙WFP=PWBaseK
42 15 3 latmcl KLatP˙QBaseKWBaseKP˙Q˙WBaseK
43 14 38 41 42 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WFP=PP˙Q˙WBaseK
44 15 2 latjcom KLatPBaseKP˙Q˙WBaseKP˙P˙Q˙W=P˙Q˙W˙P
45 14 19 43 44 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WFP=PP˙P˙Q˙W=P˙Q˙W˙P
46 1 2 4 hlatlej1 KHLPAQAP˙P˙Q
47 8 9 10 46 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WFP=PP˙P˙Q
48 15 1 2 3 4 atmod2i1 KHLPAP˙QBaseKWBaseKP˙P˙QP˙Q˙W˙P=P˙Q˙W˙P
49 8 9 38 41 47 48 syl131anc KHLWHFTPA¬P˙WQA¬Q˙WFP=PP˙Q˙W˙P=P˙Q˙W˙P
50 eqid 1.K=1.K
51 1 2 50 4 5 lhpjat1 KHLWHPA¬P˙WW˙P=1.K
52 8 39 24 51 syl21anc KHLWHFTPA¬P˙WQA¬Q˙WFP=PW˙P=1.K
53 52 oveq2d KHLWHFTPA¬P˙WQA¬Q˙WFP=PP˙Q˙W˙P=P˙Q˙1.K
54 15 3 50 olm11 KOLP˙QBaseKP˙Q˙1.K=P˙Q
55 32 38 54 syl2anc KHLWHFTPA¬P˙WQA¬Q˙WFP=PP˙Q˙1.K=P˙Q
56 49 53 55 3eqtrd KHLWHFTPA¬P˙WQA¬Q˙WFP=PP˙Q˙W˙P=P˙Q
57 36 45 56 3eqtrd KHLWHFTPA¬P˙WQA¬Q˙WFP=PFP˙P˙Q˙W=P˙Q
58 35 57 oveq12d KHLWHFTPA¬P˙WQA¬Q˙WFP=PQ˙RF˙FP˙P˙Q˙W=Q˙P˙Q
59 1 4 5 6 ltrnateq KHLWHFTPA¬P˙WQA¬Q˙WFP=PFQ=Q
60 22 58 59 3eqtr4rd KHLWHFTPA¬P˙WQA¬Q˙WFP=PFQ=Q˙RF˙FP˙P˙Q˙W