Metamath Proof Explorer


Theorem cdleme22cN

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 5th line on p. 115. Show that t \/ v =/= p \/ q and s <_ p \/ q implies -. v <_ p \/ q. (Contributed by NM, 3-Dec-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme22.l ˙=K
cdleme22.j ˙=joinK
cdleme22.m ˙=meetK
cdleme22.a A=AtomsK
cdleme22.h H=LHypK
Assertion cdleme22cN KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙Q¬V˙P˙Q

Proof

Step Hyp Ref Expression
1 cdleme22.l ˙=K
2 cdleme22.j ˙=joinK
3 cdleme22.m ˙=meetK
4 cdleme22.a A=AtomsK
5 cdleme22.h H=LHypK
6 simp11l KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QKHL
7 6 hllatd KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QKLat
8 simp12l KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QPA
9 simp13 KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QQA
10 eqid BaseK=BaseK
11 10 2 4 hlatjcl KHLPAQAP˙QBaseK
12 6 8 9 11 syl3anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QP˙QBaseK
13 simp11r KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QWH
14 10 5 lhpbase WHWBaseK
15 13 14 syl KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QWBaseK
16 10 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
17 7 12 15 16 syl3anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QP˙Q˙W˙W
18 simp21r KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙Q¬S˙W
19 nbrne2 P˙Q˙W˙W¬S˙WP˙Q˙WS
20 17 18 19 syl2anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QP˙Q˙WS
21 simp32l KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QS˙T˙V
22 21 adantr KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QS˙T˙V
23 6 adantr KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QKHL
24 13 adantr KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QWH
25 simpl12 KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QPA¬P˙W
26 simpl13 KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QQA
27 simp31l KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QPQ
28 27 adantr KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QPQ
29 simp23l KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QVA
30 29 adantr KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QVA
31 simp23r KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙W
32 31 adantr KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QV˙W
33 simpr KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QV˙P˙Q
34 eqid P˙Q˙W=P˙Q˙W
35 1 2 3 4 5 34 cdleme22aa KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QV=P˙Q˙W
36 23 24 25 26 28 30 32 33 35 syl233anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QV=P˙Q˙W
37 36 oveq2d KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QT˙V=T˙P˙Q˙W
38 22 37 breqtrd KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QS˙T˙P˙Q˙W
39 simp32r KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QS˙P˙Q
40 39 adantr KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QS˙P˙Q
41 simp21l KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QSA
42 10 4 atbase SASBaseK
43 41 42 syl KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QSBaseK
44 simp22 KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QTA
45 simp12r KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙Q¬P˙W
46 1 2 3 4 5 lhpat KHLWHPA¬P˙WQAPQP˙Q˙WA
47 6 13 8 45 9 27 46 syl222anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QP˙Q˙WA
48 10 2 4 hlatjcl KHLTAP˙Q˙WAT˙P˙Q˙WBaseK
49 6 44 47 48 syl3anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QT˙P˙Q˙WBaseK
50 10 1 3 latlem12 KLatSBaseKT˙P˙Q˙WBaseKP˙QBaseKS˙T˙P˙Q˙WS˙P˙QS˙T˙P˙Q˙W˙P˙Q
51 7 43 49 12 50 syl13anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QS˙T˙P˙Q˙WS˙P˙QS˙T˙P˙Q˙W˙P˙Q
52 51 adantr KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QS˙T˙P˙Q˙WS˙P˙QS˙T˙P˙Q˙W˙P˙Q
53 38 40 52 mpbi2and KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QS˙T˙P˙Q˙W˙P˙Q
54 simp31r KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QST
55 41 44 54 3jca KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QSATAST
56 simp33 KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QT˙VP˙Q
57 56 21 39 3jca KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QT˙VP˙QS˙T˙VS˙P˙Q
58 1 2 3 4 5 cdleme22b KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙Q¬T˙P˙Q
59 6 55 8 9 27 29 57 58 syl232anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙Q¬T˙P˙Q
60 hlatl KHLKAtLat
61 6 60 syl KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QKAtLat
62 eqid 0.K=0.K
63 10 1 3 62 4 atnle KAtLatTAP˙QBaseK¬T˙P˙QT˙P˙Q=0.K
64 61 44 12 63 syl3anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙Q¬T˙P˙QT˙P˙Q=0.K
65 59 64 mpbid KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QT˙P˙Q=0.K
66 65 oveq1d KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QT˙P˙Q˙P˙Q˙W=0.K˙P˙Q˙W
67 10 4 atbase TATBaseK
68 44 67 syl KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QTBaseK
69 10 1 3 latmle1 KLatP˙QBaseKWBaseKP˙Q˙W˙P˙Q
70 7 12 15 69 syl3anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QP˙Q˙W˙P˙Q
71 10 1 2 3 4 atmod4i1 KHLP˙Q˙WATBaseKP˙QBaseKP˙Q˙W˙P˙QT˙P˙Q˙P˙Q˙W=T˙P˙Q˙W˙P˙Q
72 6 47 68 12 70 71 syl131anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QT˙P˙Q˙P˙Q˙W=T˙P˙Q˙W˙P˙Q
73 hlol KHLKOL
74 6 73 syl KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QKOL
75 10 3 latmcl KLatP˙QBaseKWBaseKP˙Q˙WBaseK
76 7 12 15 75 syl3anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QP˙Q˙WBaseK
77 10 2 62 olj02 KOLP˙Q˙WBaseK0.K˙P˙Q˙W=P˙Q˙W
78 74 76 77 syl2anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙Q0.K˙P˙Q˙W=P˙Q˙W
79 66 72 78 3eqtr3d KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QT˙P˙Q˙W˙P˙Q=P˙Q˙W
80 79 adantr KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QT˙P˙Q˙W˙P˙Q=P˙Q˙W
81 53 80 breqtrd KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QS˙P˙Q˙W
82 1 4 atcmp KAtLatSAP˙Q˙WAS˙P˙Q˙WS=P˙Q˙W
83 61 41 47 82 syl3anc KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QS˙P˙Q˙WS=P˙Q˙W
84 83 adantr KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QS˙P˙Q˙WS=P˙Q˙W
85 81 84 mpbid KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QS=P˙Q˙W
86 85 eqcomd KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QP˙Q˙W=S
87 86 ex KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QV˙P˙QP˙Q˙W=S
88 87 necon3ad KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙QP˙Q˙WS¬V˙P˙Q
89 20 88 mpd KHLWHPA¬P˙WQASA¬S˙WTAVAV˙WPQSTS˙T˙VS˙P˙QT˙VP˙Q¬V˙P˙Q