| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme30.b |
|
| 2 |
|
cdleme30.l |
|
| 3 |
|
cdleme30.j |
|
| 4 |
|
cdleme30.m |
|
| 5 |
|
cdleme30.a |
|
| 6 |
|
cdleme30.h |
|
| 7 |
|
simp1l |
|
| 8 |
7
|
hllatd |
|
| 9 |
|
simp21 |
|
| 10 |
1 5
|
atbase |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
simp23 |
|
| 13 |
|
simp1r |
|
| 14 |
1 6
|
lhpbase |
|
| 15 |
13 14
|
syl |
|
| 16 |
1 4
|
latmcl |
|
| 17 |
8 12 15 16
|
syl3anc |
|
| 18 |
|
simp22l |
|
| 19 |
1 3
|
latjass |
|
| 20 |
8 11 17 18 19
|
syl13anc |
|
| 21 |
|
simp3l |
|
| 22 |
|
simp3r |
|
| 23 |
1 2 4
|
latmlem1 |
|
| 24 |
8 18 12 15 23
|
syl13anc |
|
| 25 |
22 24
|
mpd |
|
| 26 |
1 4
|
latmcl |
|
| 27 |
8 18 15 26
|
syl3anc |
|
| 28 |
1 2 3
|
latjlej2 |
|
| 29 |
8 27 17 11 28
|
syl13anc |
|
| 30 |
25 29
|
mpd |
|
| 31 |
21 30
|
eqbrtrrd |
|
| 32 |
1 3
|
latjcl |
|
| 33 |
8 11 17 32
|
syl3anc |
|
| 34 |
1 2 3
|
latleeqj2 |
|
| 35 |
8 18 33 34
|
syl3anc |
|
| 36 |
31 35
|
mpbid |
|
| 37 |
|
simp1 |
|
| 38 |
1 2 3 4 6
|
lhpmod2i2 |
|
| 39 |
37 12 18 22 38
|
syl121anc |
|
| 40 |
39
|
oveq2d |
|
| 41 |
|
simp22 |
|
| 42 |
|
eqid |
|
| 43 |
1 2 3 42 6
|
lhpj1 |
|
| 44 |
37 41 43
|
syl2anc |
|
| 45 |
44
|
oveq2d |
|
| 46 |
|
hlol |
|
| 47 |
7 46
|
syl |
|
| 48 |
1 4 42
|
olm11 |
|
| 49 |
47 12 48
|
syl2anc |
|
| 50 |
45 49
|
eqtrd |
|
| 51 |
50
|
oveq2d |
|
| 52 |
1 2 3
|
latlej1 |
|
| 53 |
8 11 27 52
|
syl3anc |
|
| 54 |
53 21
|
breqtrd |
|
| 55 |
1 2 8 11 18 12 54 22
|
lattrd |
|
| 56 |
1 2 3
|
latleeqj1 |
|
| 57 |
8 11 12 56
|
syl3anc |
|
| 58 |
55 57
|
mpbid |
|
| 59 |
40 51 58
|
3eqtrd |
|
| 60 |
20 36 59
|
3eqtr3d |
|