Metamath Proof Explorer


Theorem cdleme7c

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme7ga and cdleme7 . (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme4.l ˙=K
cdleme4.j ˙=joinK
cdleme4.m ˙=meetK
cdleme4.a A=AtomsK
cdleme4.h H=LHypK
cdleme4.u U=P˙Q˙W
cdleme4.f F=S˙U˙Q˙P˙S˙W
cdleme4.g G=P˙Q˙F˙R˙S˙W
cdleme7.v V=R˙S˙W
Assertion cdleme7c KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QUV

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙=K
2 cdleme4.j ˙=joinK
3 cdleme4.m ˙=meetK
4 cdleme4.a A=AtomsK
5 cdleme4.h H=LHypK
6 cdleme4.u U=P˙Q˙W
7 cdleme4.f F=S˙U˙Q˙P˙S˙W
8 cdleme4.g G=P˙Q˙F˙R˙S˙W
9 cdleme7.v V=R˙S˙W
10 6 9 oveq12i U˙V=P˙Q˙W˙R˙S˙W
11 simp11 KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKHLWH
12 simp12l KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPA
13 simp13 KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QQA
14 simp2l KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRA¬R˙W
15 simp32 KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙P˙Q
16 1 2 3 4 5 6 cdleme4 KHLWHPAQARA¬R˙WR˙P˙QP˙Q=R˙U
17 11 12 13 14 15 16 syl131anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q=R˙U
18 17 oveq1d KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q˙R˙S=R˙U˙R˙S
19 simp11l KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKHL
20 simp12 KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPA¬P˙W
21 simp31 KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPQ
22 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
23 11 20 13 21 22 syl112anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QUA
24 simp2rl KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QSA
25 simp2ll KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRA
26 19 hllatd KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKLat
27 eqid BaseK=BaseK
28 27 2 4 hlatjcl KHLPAQAP˙QBaseK
29 19 12 13 28 syl3anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙QBaseK
30 simp11r KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QWH
31 27 5 lhpbase WHWBaseK
32 30 31 syl KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QWBaseK
33 27 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
34 26 29 32 33 syl3anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q˙W˙W
35 6 34 eqbrtrid KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QU˙W
36 simp2rr KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q¬S˙W
37 nbrne2 U˙W¬S˙WUS
38 35 36 37 syl2anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QUS
39 1 2 3 4 5 6 7 8 cdleme7aa KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q¬R˙U˙S
40 1 2 3 4 2llnma2 KHLUASARAUS¬R˙U˙SR˙U˙R˙S=R
41 19 23 24 25 38 39 40 syl132anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙U˙R˙S=R
42 18 41 eqtrd KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q˙R˙S=R
43 42 oveq1d KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q˙R˙S˙W=R˙W
44 hlol KHLKOL
45 19 44 syl KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKOL
46 27 2 4 hlatjcl KHLRASAR˙SBaseK
47 19 25 24 46 syl3anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙SBaseK
48 27 3 latmmdir KOLP˙QBaseKR˙SBaseKWBaseKP˙Q˙R˙S˙W=P˙Q˙W˙R˙S˙W
49 45 29 47 32 48 syl13anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q˙R˙S˙W=P˙Q˙W˙R˙S˙W
50 eqid 0.K=0.K
51 1 3 50 4 5 lhpmat KHLWHRA¬R˙WR˙W=0.K
52 11 14 51 syl2anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙W=0.K
53 43 49 52 3eqtr3d KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q˙W˙R˙S˙W=0.K
54 10 53 eqtrid KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QU˙V=0.K
55 hlatl KHLKAtLat
56 19 55 syl KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKAtLat
57 simp33 KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q¬S˙P˙Q
58 1 2 3 4 5 6 7 8 9 cdleme7b KHLWHRA¬R˙WSA¬S˙P˙QR˙P˙QVA
59 11 14 24 57 15 58 syl113anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QVA
60 3 50 4 atnem0 KAtLatUAVAUVU˙V=0.K
61 56 23 59 60 syl3anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QUVU˙V=0.K
62 54 61 mpbird KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QUV