Metamath Proof Explorer


Theorem cdlemg17a

Description: TODO: FIX COMMENT. (Contributed by NM, 8-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg17a KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QGP˙P˙Q

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 eqid BaseK=BaseK
9 simp1l KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QKHL
10 9 hllatd KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QKLat
11 simp1 KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QKHLWH
12 simp3l KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QGT
13 simp2ll KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QPA
14 1 4 5 6 ltrnat KHLWHGTPAGPA
15 11 12 13 14 syl3anc KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QGPA
16 8 4 atbase GPAGPBaseK
17 15 16 syl KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QGPBaseK
18 8 2 4 hlatjcl KHLPAGPAP˙GPBaseK
19 9 13 15 18 syl3anc KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QP˙GPBaseK
20 simp2rl KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QQA
21 8 2 4 hlatjcl KHLPAQAP˙QBaseK
22 9 13 20 21 syl3anc KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QP˙QBaseK
23 1 2 4 hlatlej2 KHLPAGPAGP˙P˙GP
24 9 13 15 23 syl3anc KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QGP˙P˙GP
25 simp2l KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QPA¬P˙W
26 eqid P˙GP˙W=P˙GP˙W
27 1 2 3 4 5 26 cdleme0cp KHLWHPA¬P˙WGPAP˙P˙GP˙W=P˙GP
28 11 25 15 27 syl12anc KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QP˙P˙GP˙W=P˙GP
29 1 2 4 hlatlej1 KHLPAQAP˙P˙Q
30 9 13 20 29 syl3anc KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QP˙P˙Q
31 1 2 3 4 5 6 7 trlval2 KHLWHGTPA¬P˙WRG=P˙GP˙W
32 11 12 25 31 syl3anc KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QRG=P˙GP˙W
33 simp3r KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QRG˙P˙Q
34 32 33 eqbrtrrd KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QP˙GP˙W˙P˙Q
35 8 4 atbase PAPBaseK
36 13 35 syl KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QPBaseK
37 simp1r KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QWH
38 8 5 lhpbase WHWBaseK
39 37 38 syl KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QWBaseK
40 8 3 latmcl KLatP˙GPBaseKWBaseKP˙GP˙WBaseK
41 10 19 39 40 syl3anc KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QP˙GP˙WBaseK
42 8 1 2 latjle12 KLatPBaseKP˙GP˙WBaseKP˙QBaseKP˙P˙QP˙GP˙W˙P˙QP˙P˙GP˙W˙P˙Q
43 10 36 41 22 42 syl13anc KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QP˙P˙QP˙GP˙W˙P˙QP˙P˙GP˙W˙P˙Q
44 30 34 43 mpbi2and KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QP˙P˙GP˙W˙P˙Q
45 28 44 eqbrtrrd KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QP˙GP˙P˙Q
46 8 1 10 17 19 22 24 45 lattrd KHLWHPA¬P˙WQA¬Q˙WGTRG˙P˙QGP˙P˙Q