| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
cdlemg31.n |
|
| 9 |
|
simp11 |
|
| 10 |
|
simp12 |
|
| 11 |
|
simp13 |
|
| 12 |
|
simp22 |
|
| 13 |
|
simp23l |
|
| 14 |
|
simp31 |
|
| 15 |
1 2 3 4 5 6 7 8
|
cdlemg31b0a |
|
| 16 |
9 10 11 12 13 14 15
|
syl132anc |
|
| 17 |
|
simp23r |
|
| 18 |
17
|
adantr |
|
| 19 |
|
simp11l |
|
| 20 |
19
|
adantr |
|
| 21 |
|
hlatl |
|
| 22 |
20 21
|
syl |
|
| 23 |
|
simpl21 |
|
| 24 |
|
simpr |
|
| 25 |
1 4
|
atcmp |
|
| 26 |
22 23 24 25
|
syl3anc |
|
| 27 |
26
|
necon3bbid |
|
| 28 |
19
|
adantr |
|
| 29 |
28 21
|
syl |
|
| 30 |
|
simpl21 |
|
| 31 |
|
eqid |
|
| 32 |
1 31 4
|
atnle0 |
|
| 33 |
29 30 32
|
syl2anc |
|
| 34 |
|
simpr |
|
| 35 |
34
|
breq2d |
|
| 36 |
33 35
|
mtbird |
|
| 37 |
17
|
adantr |
|
| 38 |
36 37
|
2thd |
|
| 39 |
27 38
|
jaodan |
|
| 40 |
18 39
|
mpbird |
|
| 41 |
16 40
|
mpdan |
|
| 42 |
|
simp32 |
|
| 43 |
19
|
hllatd |
|
| 44 |
|
simp21 |
|
| 45 |
|
eqid |
|
| 46 |
45 4
|
atbase |
|
| 47 |
44 46
|
syl |
|
| 48 |
|
simp12l |
|
| 49 |
|
simp22l |
|
| 50 |
45 2 4
|
hlatjcl |
|
| 51 |
19 48 49 50
|
syl3anc |
|
| 52 |
|
simp13l |
|
| 53 |
|
simp33 |
|
| 54 |
1 4 5 6 7
|
trlat |
|
| 55 |
9 10 13 53 54
|
syl112anc |
|
| 56 |
45 2 4
|
hlatjcl |
|
| 57 |
19 52 55 56
|
syl3anc |
|
| 58 |
45 1 3
|
latlem12 |
|
| 59 |
43 47 51 57 58
|
syl13anc |
|
| 60 |
8
|
breq2i |
|
| 61 |
59 60
|
bitr4di |
|
| 62 |
61
|
biimpd |
|
| 63 |
42 62
|
mpand |
|
| 64 |
41 63
|
mtod |
|
| 65 |
1 5 6 7
|
trlle |
|
| 66 |
9 13 65
|
syl2anc |
|
| 67 |
|
simp13r |
|
| 68 |
|
nbrne2 |
|
| 69 |
66 67 68
|
syl2anc |
|
| 70 |
1 2 4
|
hlatexch1 |
|
| 71 |
19 55 44 52 69 70
|
syl131anc |
|
| 72 |
64 71
|
mtod |
|