Metamath Proof Explorer


Theorem cdlemg27b

Description: TODO: Fix comment. (Contributed by NM, 28-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
Assertion cdlemg27b KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPP¬RF˙Q˙z

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 simp11 KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPKHLWH
10 simp12 KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPPA¬P˙W
11 simp13 KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPQA¬Q˙W
12 simp22 KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPvAv˙W
13 simp23l KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPFT
14 simp31 KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPvRF
15 1 2 3 4 5 6 7 8 cdlemg31b0a KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAN=0.K
16 9 10 11 12 13 14 15 syl132anc KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPNAN=0.K
17 simp23r KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPzN
18 17 adantr KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPNAN=0.KzN
19 simp11l KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPKHL
20 19 adantr KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPNAKHL
21 hlatl KHLKAtLat
22 20 21 syl KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPNAKAtLat
23 simpl21 KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPNAzA
24 simpr KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPNANA
25 1 4 atcmp KAtLatzANAz˙Nz=N
26 22 23 24 25 syl3anc KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPNAz˙Nz=N
27 26 necon3bbid KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPNA¬z˙NzN
28 19 adantr KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPN=0.KKHL
29 28 21 syl KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPN=0.KKAtLat
30 simpl21 KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPN=0.KzA
31 eqid 0.K=0.K
32 1 31 4 atnle0 KAtLatzA¬z˙0.K
33 29 30 32 syl2anc KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPN=0.K¬z˙0.K
34 simpr KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPN=0.KN=0.K
35 34 breq2d KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPN=0.Kz˙Nz˙0.K
36 33 35 mtbird KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPN=0.K¬z˙N
37 17 adantr KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPN=0.KzN
38 36 37 2thd KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPN=0.K¬z˙NzN
39 27 38 jaodan KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPNAN=0.K¬z˙NzN
40 18 39 mpbird KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPNAN=0.K¬z˙N
41 16 40 mpdan KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPP¬z˙N
42 simp32 KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPz˙P˙v
43 19 hllatd KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPKLat
44 simp21 KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPzA
45 eqid BaseK=BaseK
46 45 4 atbase zAzBaseK
47 44 46 syl KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPzBaseK
48 simp12l KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPPA
49 simp22l KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPvA
50 45 2 4 hlatjcl KHLPAvAP˙vBaseK
51 19 48 49 50 syl3anc KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPP˙vBaseK
52 simp13l KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPQA
53 simp33 KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPFPP
54 1 4 5 6 7 trlat KHLWHPA¬P˙WFTFPPRFA
55 9 10 13 53 54 syl112anc KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPRFA
56 45 2 4 hlatjcl KHLQARFAQ˙RFBaseK
57 19 52 55 56 syl3anc KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPQ˙RFBaseK
58 45 1 3 latlem12 KLatzBaseKP˙vBaseKQ˙RFBaseKz˙P˙vz˙Q˙RFz˙P˙v˙Q˙RF
59 43 47 51 57 58 syl13anc KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPz˙P˙vz˙Q˙RFz˙P˙v˙Q˙RF
60 8 breq2i z˙Nz˙P˙v˙Q˙RF
61 59 60 bitr4di KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPz˙P˙vz˙Q˙RFz˙N
62 61 biimpd KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPz˙P˙vz˙Q˙RFz˙N
63 42 62 mpand KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPz˙Q˙RFz˙N
64 41 63 mtod KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPP¬z˙Q˙RF
65 1 5 6 7 trlle KHLWHFTRF˙W
66 9 13 65 syl2anc KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPRF˙W
67 simp13r KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPP¬Q˙W
68 nbrne2 RF˙W¬Q˙WRFQ
69 66 67 68 syl2anc KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPRFQ
70 1 2 4 hlatexch1 KHLRFAzAQARFQRF˙Q˙zz˙Q˙RF
71 19 55 44 52 69 70 syl131anc KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPPRF˙Q˙zz˙Q˙RF
72 64 71 mtod KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPP¬RF˙Q˙z