| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg46.b |
|
| 2 |
|
cdlemg46.h |
|
| 3 |
|
cdlemg46.t |
|
| 4 |
|
cdlemg46.r |
|
| 5 |
|
simpl1l |
|
| 6 |
|
simp1 |
|
| 7 |
|
simp2r |
|
| 8 |
|
simp32 |
|
| 9 |
|
eqid |
|
| 10 |
1 9 2 3 4
|
trlnidat |
|
| 11 |
6 7 8 10
|
syl3anc |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simp2l |
|
| 14 |
|
simp31 |
|
| 15 |
1 9 2 3 4
|
trlnidat |
|
| 16 |
6 13 14 15
|
syl3anc |
|
| 17 |
16
|
adantr |
|
| 18 |
|
simpl33 |
|
| 19 |
|
simpr |
|
| 20 |
2 3
|
ltrnco |
|
| 21 |
6 7 13 20
|
syl3anc |
|
| 22 |
2 3
|
ltrncnv |
|
| 23 |
6 13 22
|
syl2anc |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
24 25 2 3 4
|
trlco |
|
| 27 |
6 21 23 26
|
syl3anc |
|
| 28 |
|
coass |
|
| 29 |
1 2 3
|
ltrn1o |
|
| 30 |
6 13 29
|
syl2anc |
|
| 31 |
|
f1ococnv2 |
|
| 32 |
30 31
|
syl |
|
| 33 |
32
|
coeq2d |
|
| 34 |
1 2 3
|
ltrn1o |
|
| 35 |
6 7 34
|
syl2anc |
|
| 36 |
|
f1of |
|
| 37 |
|
fcoi1 |
|
| 38 |
35 36 37
|
3syl |
|
| 39 |
33 38
|
eqtrd |
|
| 40 |
28 39
|
eqtrid |
|
| 41 |
40
|
fveq2d |
|
| 42 |
2 3 4
|
trlcnv |
|
| 43 |
6 13 42
|
syl2anc |
|
| 44 |
43
|
oveq2d |
|
| 45 |
27 41 44
|
3brtr3d |
|
| 46 |
45
|
adantr |
|
| 47 |
24 25 9
|
hlatlej2 |
|
| 48 |
5 19 17 47
|
syl3anc |
|
| 49 |
5
|
hllatd |
|
| 50 |
1 9
|
atbase |
|
| 51 |
12 50
|
syl |
|
| 52 |
1 9
|
atbase |
|
| 53 |
17 52
|
syl |
|
| 54 |
1 25 9
|
hlatjcl |
|
| 55 |
5 19 17 54
|
syl3anc |
|
| 56 |
1 24 25
|
latjle12 |
|
| 57 |
49 51 53 55 56
|
syl13anc |
|
| 58 |
46 48 57
|
mpbi2and |
|
| 59 |
24 25 9
|
2atjlej |
|
| 60 |
5 12 17 18 19 17 58 59
|
syl133anc |
|
| 61 |
|
nelne2 |
|
| 62 |
61
|
necomd |
|
| 63 |
16 62
|
sylan |
|
| 64 |
60 63
|
pm2.61dan |
|