Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg46.b |
|
2 |
|
cdlemg46.h |
|
3 |
|
cdlemg46.t |
|
4 |
|
cdlemg46.r |
|
5 |
|
simpl1l |
|
6 |
|
simp1 |
|
7 |
|
simp2r |
|
8 |
|
simp32 |
|
9 |
|
eqid |
|
10 |
1 9 2 3 4
|
trlnidat |
|
11 |
6 7 8 10
|
syl3anc |
|
12 |
11
|
adantr |
|
13 |
|
simp2l |
|
14 |
|
simp31 |
|
15 |
1 9 2 3 4
|
trlnidat |
|
16 |
6 13 14 15
|
syl3anc |
|
17 |
16
|
adantr |
|
18 |
|
simpl33 |
|
19 |
|
simpr |
|
20 |
2 3
|
ltrnco |
|
21 |
6 7 13 20
|
syl3anc |
|
22 |
2 3
|
ltrncnv |
|
23 |
6 13 22
|
syl2anc |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
24 25 2 3 4
|
trlco |
|
27 |
6 21 23 26
|
syl3anc |
|
28 |
|
coass |
|
29 |
1 2 3
|
ltrn1o |
|
30 |
6 13 29
|
syl2anc |
|
31 |
|
f1ococnv2 |
|
32 |
30 31
|
syl |
|
33 |
32
|
coeq2d |
|
34 |
1 2 3
|
ltrn1o |
|
35 |
6 7 34
|
syl2anc |
|
36 |
|
f1of |
|
37 |
|
fcoi1 |
|
38 |
35 36 37
|
3syl |
|
39 |
33 38
|
eqtrd |
|
40 |
28 39
|
eqtrid |
|
41 |
40
|
fveq2d |
|
42 |
2 3 4
|
trlcnv |
|
43 |
6 13 42
|
syl2anc |
|
44 |
43
|
oveq2d |
|
45 |
27 41 44
|
3brtr3d |
|
46 |
45
|
adantr |
|
47 |
24 25 9
|
hlatlej2 |
|
48 |
5 19 17 47
|
syl3anc |
|
49 |
5
|
hllatd |
|
50 |
1 9
|
atbase |
|
51 |
12 50
|
syl |
|
52 |
1 9
|
atbase |
|
53 |
17 52
|
syl |
|
54 |
1 25 9
|
hlatjcl |
|
55 |
5 19 17 54
|
syl3anc |
|
56 |
1 24 25
|
latjle12 |
|
57 |
49 51 53 55 56
|
syl13anc |
|
58 |
46 48 57
|
mpbi2and |
|
59 |
24 25 9
|
2atjlej |
|
60 |
5 12 17 18 19 17 58 59
|
syl133anc |
|
61 |
|
nelne2 |
|
62 |
61
|
necomd |
|
63 |
16 62
|
sylan |
|
64 |
60 63
|
pm2.61dan |
|