Metamath Proof Explorer


Theorem cdlemh2

Description: Part of proof of Lemma H of Crawley p. 118. (Contributed by NM, 16-Jun-2013)

Ref Expression
Hypotheses cdlemh.b B = Base K
cdlemh.l ˙ = K
cdlemh.j ˙ = join K
cdlemh.m ˙ = meet K
cdlemh.a A = Atoms K
cdlemh.h H = LHyp K
cdlemh.t T = LTrn K W
cdlemh.r R = trL K W
cdlemh.s S = P ˙ R G ˙ Q ˙ R G F -1
cdlemh.z 0 ˙ = 0. K
Assertion cdlemh2 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G S ˙ W = 0 ˙

Proof

Step Hyp Ref Expression
1 cdlemh.b B = Base K
2 cdlemh.l ˙ = K
3 cdlemh.j ˙ = join K
4 cdlemh.m ˙ = meet K
5 cdlemh.a A = Atoms K
6 cdlemh.h H = LHyp K
7 cdlemh.t T = LTrn K W
8 cdlemh.r R = trL K W
9 cdlemh.s S = P ˙ R G ˙ Q ˙ R G F -1
10 cdlemh.z 0 ˙ = 0. K
11 9 oveq1i S ˙ W = P ˙ R G ˙ Q ˙ R G F -1 ˙ W
12 simp11l K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G K HL
13 hlol K HL K OL
14 12 13 syl K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G K OL
15 12 hllatd K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G K Lat
16 simp2ll K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G P A
17 1 5 atbase P A P B
18 16 17 syl K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G P B
19 simp11r K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G W H
20 12 19 jca K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G K HL W H
21 simp13 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G G T
22 1 6 7 8 trlcl K HL W H G T R G B
23 20 21 22 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G R G B
24 1 3 latjcl K Lat P B R G B P ˙ R G B
25 15 18 23 24 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G P ˙ R G B
26 simp2rl K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G Q A
27 1 5 atbase Q A Q B
28 26 27 syl K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G Q B
29 simp12 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G F T
30 6 7 ltrncnv K HL W H F T F -1 T
31 20 29 30 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G F -1 T
32 6 7 ltrnco K HL W H G T F -1 T G F -1 T
33 20 21 31 32 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G G F -1 T
34 1 6 7 8 trlcl K HL W H G F -1 T R G F -1 B
35 20 33 34 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G R G F -1 B
36 1 3 latjcl K Lat Q B R G F -1 B Q ˙ R G F -1 B
37 15 28 35 36 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G Q ˙ R G F -1 B
38 1 6 lhpbase W H W B
39 19 38 syl K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G W B
40 1 4 latmassOLD K OL P ˙ R G B Q ˙ R G F -1 B W B P ˙ R G ˙ Q ˙ R G F -1 ˙ W = P ˙ R G ˙ Q ˙ R G F -1 ˙ W
41 14 25 37 39 40 syl13anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G P ˙ R G ˙ Q ˙ R G F -1 ˙ W = P ˙ R G ˙ Q ˙ R G F -1 ˙ W
42 simp2r K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G Q A ¬ Q ˙ W
43 2 4 10 5 6 lhpmat K HL W H Q A ¬ Q ˙ W Q ˙ W = 0 ˙
44 20 42 43 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G Q ˙ W = 0 ˙
45 44 oveq1d K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G Q ˙ W ˙ R G F -1 = 0 ˙ ˙ R G F -1
46 2 6 7 8 trlle K HL W H G F -1 T R G F -1 ˙ W
47 20 33 46 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G R G F -1 ˙ W
48 1 2 3 4 5 atmod4i2 K HL Q A R G F -1 B W B R G F -1 ˙ W Q ˙ W ˙ R G F -1 = Q ˙ R G F -1 ˙ W
49 12 26 35 39 47 48 syl131anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G Q ˙ W ˙ R G F -1 = Q ˙ R G F -1 ˙ W
50 1 3 10 olj02 K OL R G F -1 B 0 ˙ ˙ R G F -1 = R G F -1
51 14 35 50 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G 0 ˙ ˙ R G F -1 = R G F -1
52 45 49 51 3eqtr3rd K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G R G F -1 = Q ˙ R G F -1 ˙ W
53 52 oveq2d K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G P ˙ R G ˙ R G F -1 = P ˙ R G ˙ Q ˙ R G F -1 ˙ W
54 simp2l K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G P A ¬ P ˙ W
55 21 31 jca K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G G T F -1 T
56 simp33 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G R F R G
57 56 necomd K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G R G R F
58 6 7 8 trlcnv K HL W H F T R F -1 = R F
59 20 29 58 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G R F -1 = R F
60 57 59 neeqtrrd K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G R G R F -1
61 simp31 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G F I B
62 1 6 7 ltrncnvnid K HL W H F T F I B F -1 I B
63 20 29 61 62 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G F -1 I B
64 1 6 7 8 trlcone K HL W H G T F -1 T R G R F -1 F -1 I B R G R G F -1
65 20 55 60 63 64 syl112anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G R G R G F -1
66 simp32 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G G I B
67 1 5 6 7 8 trlnidat K HL W H G T G I B R G A
68 20 21 66 67 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G R G A
69 2 6 7 8 trlle K HL W H G T R G ˙ W
70 20 21 69 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G R G ˙ W
71 5 6 7 8 trlcoat K HL W H G T F -1 T R G R F -1 R G F -1 A
72 20 55 60 71 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G R G F -1 A
73 2 3 4 10 5 6 lhp2at0 K HL W H P A ¬ P ˙ W R G R G F -1 R G A R G ˙ W R G F -1 A R G F -1 ˙ W P ˙ R G ˙ R G F -1 = 0 ˙
74 20 54 65 68 70 72 47 73 syl322anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G P ˙ R G ˙ R G F -1 = 0 ˙
75 41 53 74 3eqtr2rd K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G 0 ˙ = P ˙ R G ˙ Q ˙ R G F -1 ˙ W
76 11 75 eqtr4id K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G S ˙ W = 0 ˙