Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk4.b |
|
2 |
|
cdlemk4.l |
|
3 |
|
cdlemk4.j |
|
4 |
|
cdlemk4.m |
|
5 |
|
cdlemk4.a |
|
6 |
|
cdlemk4.h |
|
7 |
|
cdlemk4.t |
|
8 |
|
cdlemk4.r |
|
9 |
|
cdlemk4.z |
|
10 |
|
cdlemk4.y |
|
11 |
|
cdlemk4.x |
|
12 |
|
simp1l |
|
13 |
|
simp3ll |
|
14 |
|
simp1 |
|
15 |
|
simp22l |
|
16 |
|
simp22r |
|
17 |
1 5 6 7 8
|
trlnidat |
|
18 |
14 15 16 17
|
syl3anc |
|
19 |
2 3 5
|
hlatlej1 |
|
20 |
12 13 18 19
|
syl3anc |
|
21 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk38 |
|
22 |
12
|
hllatd |
|
23 |
1 5
|
atbase |
|
24 |
13 23
|
syl |
|
25 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35 |
|
26 |
2 5 6 7
|
ltrnat |
|
27 |
14 25 13 26
|
syl3anc |
|
28 |
1 5
|
atbase |
|
29 |
27 28
|
syl |
|
30 |
1 3 5
|
hlatjcl |
|
31 |
12 13 18 30
|
syl3anc |
|
32 |
1 2 3
|
latjle12 |
|
33 |
22 24 29 31 32
|
syl13anc |
|
34 |
20 21 33
|
mpbi2and |
|
35 |
1 3 5
|
hlatjcl |
|
36 |
12 13 27 35
|
syl3anc |
|
37 |
|
simp1r |
|
38 |
1 6
|
lhpbase |
|
39 |
37 38
|
syl |
|
40 |
1 2 4
|
latmlem1 |
|
41 |
22 36 31 39 40
|
syl13anc |
|
42 |
34 41
|
mpd |
|
43 |
|
simp3l |
|
44 |
2 3 4 5 6 7 8
|
trlval2 |
|
45 |
14 25 43 44
|
syl3anc |
|
46 |
2 3 4 5 6 7 8
|
trlval5 |
|
47 |
14 15 43 46
|
syl3anc |
|
48 |
42 45 47
|
3brtr4d |
|