Metamath Proof Explorer


Theorem cdlemk39

Description: Part of proof of Lemma K of Crawley p. 118. Line 31, p. 119. Trace-preserving property of tau, represented by X . (Contributed by NM, 19-Jul-2013)

Ref Expression
Hypotheses cdlemk4.b B=BaseK
cdlemk4.l ˙=K
cdlemk4.j ˙=joinK
cdlemk4.m ˙=meetK
cdlemk4.a A=AtomsK
cdlemk4.h H=LHypK
cdlemk4.t T=LTrnKW
cdlemk4.r R=trLKW
cdlemk4.z Z=P˙Rb˙NP˙RbF-1
cdlemk4.y Y=P˙RG˙Z˙RGb-1
cdlemk4.x X=ιzT|bTbIBRbRFRbRGzP=Y
Assertion cdlemk39 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNRX˙RG

Proof

Step Hyp Ref Expression
1 cdlemk4.b B=BaseK
2 cdlemk4.l ˙=K
3 cdlemk4.j ˙=joinK
4 cdlemk4.m ˙=meetK
5 cdlemk4.a A=AtomsK
6 cdlemk4.h H=LHypK
7 cdlemk4.t T=LTrnKW
8 cdlemk4.r R=trLKW
9 cdlemk4.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk4.y Y=P˙RG˙Z˙RGb-1
11 cdlemk4.x X=ιzT|bTbIBRbRFRbRGzP=Y
12 simp1l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNKHL
13 simp3ll KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNPA
14 simp1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNKHLWH
15 simp22l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNGT
16 simp22r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNGIB
17 1 5 6 7 8 trlnidat KHLWHGTGIBRGA
18 14 15 16 17 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNRGA
19 2 3 5 hlatlej1 KHLPARGAP˙P˙RG
20 12 13 18 19 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNP˙P˙RG
21 1 2 3 4 5 6 7 8 9 10 11 cdlemk38 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNXP˙P˙RG
22 12 hllatd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNKLat
23 1 5 atbase PAPB
24 13 23 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNPB
25 1 2 3 4 5 6 7 8 9 10 11 cdlemk35 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNXT
26 2 5 6 7 ltrnat KHLWHXTPAXPA
27 14 25 13 26 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNXPA
28 1 5 atbase XPAXPB
29 27 28 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNXPB
30 1 3 5 hlatjcl KHLPARGAP˙RGB
31 12 13 18 30 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNP˙RGB
32 1 2 3 latjle12 KLatPBXPBP˙RGBP˙P˙RGXP˙P˙RGP˙XP˙P˙RG
33 22 24 29 31 32 syl13anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNP˙P˙RGXP˙P˙RGP˙XP˙P˙RG
34 20 21 33 mpbi2and KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNP˙XP˙P˙RG
35 1 3 5 hlatjcl KHLPAXPAP˙XPB
36 12 13 27 35 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNP˙XPB
37 simp1r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNWH
38 1 6 lhpbase WHWB
39 37 38 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNWB
40 1 2 4 latmlem1 KLatP˙XPBP˙RGBWBP˙XP˙P˙RGP˙XP˙W˙P˙RG˙W
41 22 36 31 39 40 syl13anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNP˙XP˙P˙RGP˙XP˙W˙P˙RG˙W
42 34 41 mpd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNP˙XP˙W˙P˙RG˙W
43 simp3l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNPA¬P˙W
44 2 3 4 5 6 7 8 trlval2 KHLWHXTPA¬P˙WRX=P˙XP˙W
45 14 25 43 44 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNRX=P˙XP˙W
46 2 3 4 5 6 7 8 trlval5 KHLWHGTPA¬P˙WRG=P˙RG˙W
47 14 15 43 46 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNRG=P˙RG˙W
48 42 45 47 3brtr4d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNRX˙RG