Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
|
2 |
|
cdlemk.l |
|
3 |
|
cdlemk.j |
|
4 |
|
cdlemk.a |
|
5 |
|
cdlemk.h |
|
6 |
|
cdlemk.t |
|
7 |
|
cdlemk.r |
|
8 |
|
cdlemk.m |
|
9 |
1 2 3 4 5 6 7 8
|
cdlemk8 |
|
10 |
9
|
oveq1d |
|
11 |
|
simp1 |
|
12 |
2 4 5 6
|
ltrnel |
|
13 |
12
|
3adant2r |
|
14 |
|
eqid |
|
15 |
2 8 14 4 5
|
lhpmat |
|
16 |
11 13 15
|
syl2anc |
|
17 |
16
|
oveq1d |
|
18 |
|
simp1l |
|
19 |
|
simp2l |
|
20 |
|
simp3l |
|
21 |
2 4 5 6
|
ltrnat |
|
22 |
11 19 20 21
|
syl3anc |
|
23 |
|
simp2r |
|
24 |
5 6
|
ltrncnv |
|
25 |
11 19 24
|
syl2anc |
|
26 |
5 6
|
ltrnco |
|
27 |
11 23 25 26
|
syl3anc |
|
28 |
1 5 6 7
|
trlcl |
|
29 |
11 27 28
|
syl2anc |
|
30 |
|
simp1r |
|
31 |
1 5
|
lhpbase |
|
32 |
30 31
|
syl |
|
33 |
2 5 6 7
|
trlle |
|
34 |
11 27 33
|
syl2anc |
|
35 |
1 2 3 8 4
|
atmod4i2 |
|
36 |
18 22 29 32 34 35
|
syl131anc |
|
37 |
|
hlol |
|
38 |
18 37
|
syl |
|
39 |
1 3 14
|
olj02 |
|
40 |
38 29 39
|
syl2anc |
|
41 |
5 6 7
|
trlcocnv |
|
42 |
11 19 23 41
|
syl3anc |
|
43 |
40 42
|
eqtr4d |
|
44 |
17 36 43
|
3eqtr3d |
|
45 |
10 44
|
eqtrd |
|