Description: The mapping of the class of singleton functions into the class of constant functions is a surjection. (Contributed by AV, 14-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cfsetsnfsetfv.f | |
|
cfsetsnfsetfv.g | |
||
cfsetsnfsetfv.h | |
||
Assertion | cfsetsnfsetfo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfsetsnfsetfv.f | |
|
2 | cfsetsnfsetfv.g | |
|
3 | cfsetsnfsetfv.h | |
|
4 | 1 2 3 | cfsetsnfsetf | |
5 | vex | |
|
6 | feq1 | |
|
7 | fveq1 | |
|
8 | 7 | adantr | |
9 | 8 | eqeq1d | |
10 | 9 | ralbidva | |
11 | 10 | rexbidv | |
12 | 6 11 | anbi12d | |
13 | 5 12 1 | elab2 | |
14 | simpllr | |
|
15 | eqid | |
|
16 | 14 15 | fmptd | |
17 | snex | |
|
18 | 17 | mptex | |
19 | feq1 | |
|
20 | 18 19 2 | elab2 | |
21 | 16 20 | sylibr | |
22 | fveq1 | |
|
23 | 22 | mpteq2dv | |
24 | 23 | eqeq2d | |
25 | 24 | adantl | |
26 | simpr | |
|
27 | eqidd | |
|
28 | eqidd | |
|
29 | eqidd | |
|
30 | snidg | |
|
31 | 30 | ad6antlr | |
32 | simpllr | |
|
33 | 32 | adantr | |
34 | 28 29 31 33 | fvmptd | |
35 | simpr | |
|
36 | 35 | adantr | |
37 | 27 34 36 32 | fvmptd | |
38 | 26 37 | eqtr4d | |
39 | 38 | ex | |
40 | 39 | ralimdva | |
41 | 40 | imp | |
42 | ffn | |
|
43 | 42 | adantl | |
44 | nfv | |
|
45 | fvexd | |
|
46 | eqid | |
|
47 | 44 45 46 | fnmptd | |
48 | 43 47 | jca | |
49 | 48 | adantr | |
50 | 49 | adantr | |
51 | eqfnfv | |
|
52 | 50 51 | syl | |
53 | 41 52 | mpbird | |
54 | 21 25 53 | rspcedvd | |
55 | simp-4l | |
|
56 | 1 2 3 | cfsetsnfsetfv | |
57 | 55 56 | sylan | |
58 | 57 | eqeq2d | |
59 | 58 | rexbidva | |
60 | 54 59 | mpbird | |
61 | 60 | ex | |
62 | 61 | rexlimdva | |
63 | 62 | expimpd | |
64 | 13 63 | biimtrid | |
65 | 64 | ralrimiv | |
66 | dffo3 | |
|
67 | 4 65 66 | sylanbrc | |