Metamath Proof Explorer


Theorem cfsetsnfsetfo

Description: The mapping of the class of singleton functions into the class of constant functions is a surjection. (Contributed by AV, 14-Sep-2024)

Ref Expression
Hypotheses cfsetsnfsetfv.f F=f|f:ABbBzAfz=b
cfsetsnfsetfv.g G=x|x:YB
cfsetsnfsetfv.h H=gGaAgY
Assertion cfsetsnfsetfo AVYAH:GontoF

Proof

Step Hyp Ref Expression
1 cfsetsnfsetfv.f F=f|f:ABbBzAfz=b
2 cfsetsnfsetfv.g G=x|x:YB
3 cfsetsnfsetfv.h H=gGaAgY
4 1 2 3 cfsetsnfsetf AVYAH:GF
5 vex mV
6 feq1 f=mf:ABm:AB
7 fveq1 f=mfz=mz
8 7 adantr f=mzAfz=mz
9 8 eqeq1d f=mzAfz=bmz=b
10 9 ralbidva f=mzAfz=bzAmz=b
11 10 rexbidv f=mbBzAfz=bbBzAmz=b
12 6 11 anbi12d f=mf:ABbBzAfz=bm:ABbBzAmz=b
13 5 12 1 elab2 mFm:ABbBzAmz=b
14 simpllr AVYAm:ABbBzAmz=byYbB
15 eqid yYb=yYb
16 14 15 fmptd AVYAm:ABbBzAmz=byYb:YB
17 snex YV
18 17 mptex yYbV
19 feq1 x=yYbx:YByYb:YB
20 18 19 2 elab2 yYbGyYb:YB
21 16 20 sylibr AVYAm:ABbBzAmz=byYbG
22 fveq1 n=yYbnY=yYbY
23 22 mpteq2dv n=yYbaAnY=aAyYbY
24 23 eqeq2d n=yYbm=aAnYm=aAyYbY
25 24 adantl AVYAm:ABbBzAmz=bn=yYbm=aAnYm=aAyYbY
26 simpr AVYAm:ABbBzAmz=bmz=b
27 eqidd AVYAm:ABbBzAmz=baAyYbY=aAyYbY
28 eqidd AVYAm:ABbBzAmz=ba=zyYb=yYb
29 eqidd AVYAm:ABbBzAmz=ba=zy=Yb=b
30 snidg YAYY
31 30 ad6antlr AVYAm:ABbBzAmz=ba=zYY
32 simpllr AVYAm:ABbBzAmz=bbB
33 32 adantr AVYAm:ABbBzAmz=ba=zbB
34 28 29 31 33 fvmptd AVYAm:ABbBzAmz=ba=zyYbY=b
35 simpr AVYAm:ABbBzAzA
36 35 adantr AVYAm:ABbBzAmz=bzA
37 27 34 36 32 fvmptd AVYAm:ABbBzAmz=baAyYbYz=b
38 26 37 eqtr4d AVYAm:ABbBzAmz=bmz=aAyYbYz
39 38 ex AVYAm:ABbBzAmz=bmz=aAyYbYz
40 39 ralimdva AVYAm:ABbBzAmz=bzAmz=aAyYbYz
41 40 imp AVYAm:ABbBzAmz=bzAmz=aAyYbYz
42 ffn m:ABmFnA
43 42 adantl AVYAm:ABmFnA
44 nfv aAVYAm:AB
45 fvexd AVYAm:ABaAyYbYV
46 eqid aAyYbY=aAyYbY
47 44 45 46 fnmptd AVYAm:ABaAyYbYFnA
48 43 47 jca AVYAm:ABmFnAaAyYbYFnA
49 48 adantr AVYAm:ABbBmFnAaAyYbYFnA
50 49 adantr AVYAm:ABbBzAmz=bmFnAaAyYbYFnA
51 eqfnfv mFnAaAyYbYFnAm=aAyYbYzAmz=aAyYbYz
52 50 51 syl AVYAm:ABbBzAmz=bm=aAyYbYzAmz=aAyYbYz
53 41 52 mpbird AVYAm:ABbBzAmz=bm=aAyYbY
54 21 25 53 rspcedvd AVYAm:ABbBzAmz=bnGm=aAnY
55 simp-4l AVYAm:ABbBzAmz=bAV
56 1 2 3 cfsetsnfsetfv AVnGHn=aAnY
57 55 56 sylan AVYAm:ABbBzAmz=bnGHn=aAnY
58 57 eqeq2d AVYAm:ABbBzAmz=bnGm=Hnm=aAnY
59 58 rexbidva AVYAm:ABbBzAmz=bnGm=HnnGm=aAnY
60 54 59 mpbird AVYAm:ABbBzAmz=bnGm=Hn
61 60 ex AVYAm:ABbBzAmz=bnGm=Hn
62 61 rexlimdva AVYAm:ABbBzAmz=bnGm=Hn
63 62 expimpd AVYAm:ABbBzAmz=bnGm=Hn
64 13 63 biimtrid AVYAmFnGm=Hn
65 64 ralrimiv AVYAmFnGm=Hn
66 dffo3 H:GontoFH:GFmFnGm=Hn
67 4 65 66 sylanbrc AVYAH:GontoF