Metamath Proof Explorer


Theorem chfacffsupp

Description: The "characteristic factor function" is finitely supported. (Contributed by AV, 20-Nov-2019) (Proof shortened by AV, 23-Dec-2019)

Ref Expression
Hypotheses chfacfisf.a A=NMatR
chfacfisf.b B=BaseA
chfacfisf.p P=Poly1R
chfacfisf.y Y=NMatP
chfacfisf.r ×˙=Y
chfacfisf.s -˙=-Y
chfacfisf.0 0˙=0Y
chfacfisf.t T=NmatToPolyMatR
chfacfisf.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
Assertion chfacffsupp NFinRCRingMBsbB0sfinSupp0YG

Proof

Step Hyp Ref Expression
1 chfacfisf.a A=NMatR
2 chfacfisf.b B=BaseA
3 chfacfisf.p P=Poly1R
4 chfacfisf.y Y=NMatP
5 chfacfisf.r ×˙=Y
6 chfacfisf.s -˙=-Y
7 chfacfisf.0 0˙=0Y
8 chfacfisf.t T=NmatToPolyMatR
9 chfacfisf.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
10 fvexd NFinRCRingMBsbB0s0YV
11 ovex 0˙-˙TM×˙Tb0V
12 fvex TbsV
13 7 fvexi 0˙V
14 ovex Tbn1-˙TM×˙TbnV
15 13 14 ifex ifs+1<n0˙Tbn1-˙TM×˙TbnV
16 12 15 ifex ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙TbnV
17 11 16 ifex ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙TbnV
18 17 a1i NFinRCRingMBsbB0sn0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙TbnV
19 nnnn0 ss0
20 peano2nn0 s0s+10
21 19 20 syl ss+10
22 21 ad2antrl NFinRCRingMBsbB0ss+10
23 simplr NFinRCRingMBsbB0sk0s+1<kk0
24 0red NFinRCRingMBsbB0sk0s+1<k0
25 nnre ss
26 peano2re ss+1
27 25 26 syl ss+1
28 27 adantr sbB0ss+1
29 28 ad3antlr NFinRCRingMBsbB0sk0s+1<ks+1
30 nn0re k0k
31 30 ad2antlr NFinRCRingMBsbB0sk0s+1<kk
32 19 adantr sbB0ss0
33 32 ad2antlr NFinRCRingMBsbB0sk0s0
34 nn0p1gt0 s00<s+1
35 33 34 syl NFinRCRingMBsbB0sk00<s+1
36 35 adantr NFinRCRingMBsbB0sk0s+1<k0<s+1
37 simpr NFinRCRingMBsbB0sk0s+1<ks+1<k
38 24 29 31 36 37 lttrd NFinRCRingMBsbB0sk0s+1<k0<k
39 38 gt0ne0d NFinRCRingMBsbB0sk0s+1<kk0
40 39 neneqd NFinRCRingMBsbB0sk0s+1<k¬k=0
41 40 adantr NFinRCRingMBsbB0sk0s+1<kn=k¬k=0
42 eqeq1 n=kn=0k=0
43 42 notbid n=k¬n=0¬k=0
44 43 adantl NFinRCRingMBsbB0sk0s+1<kn=k¬n=0¬k=0
45 41 44 mpbird NFinRCRingMBsbB0sk0s+1<kn=k¬n=0
46 45 iffalsed NFinRCRingMBsbB0sk0s+1<kn=kifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
47 28 ad2antlr NFinRCRingMBsbB0sk0s+1
48 ltne s+1s+1<kks+1
49 47 48 sylan NFinRCRingMBsbB0sk0s+1<kks+1
50 49 neneqd NFinRCRingMBsbB0sk0s+1<k¬k=s+1
51 50 adantr NFinRCRingMBsbB0sk0s+1<kn=k¬k=s+1
52 eqeq1 n=kn=s+1k=s+1
53 52 notbid n=k¬n=s+1¬k=s+1
54 53 adantl NFinRCRingMBsbB0sk0s+1<kn=k¬n=s+1¬k=s+1
55 51 54 mpbird NFinRCRingMBsbB0sk0s+1<kn=k¬n=s+1
56 55 iffalsed NFinRCRingMBsbB0sk0s+1<kn=kifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=ifs+1<n0˙Tbn1-˙TM×˙Tbn
57 simplr NFinRCRingMBsbB0sk0s+1<kn=ks+1<k
58 breq2 n=ks+1<ns+1<k
59 58 adantl NFinRCRingMBsbB0sk0s+1<kn=ks+1<ns+1<k
60 57 59 mpbird NFinRCRingMBsbB0sk0s+1<kn=ks+1<n
61 60 iftrued NFinRCRingMBsbB0sk0s+1<kn=kifs+1<n0˙Tbn1-˙TM×˙Tbn=0˙
62 61 7 eqtrdi NFinRCRingMBsbB0sk0s+1<kn=kifs+1<n0˙Tbn1-˙TM×˙Tbn=0Y
63 46 56 62 3eqtrd NFinRCRingMBsbB0sk0s+1<kn=kifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=0Y
64 23 63 csbied NFinRCRingMBsbB0sk0s+1<kk/nifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=0Y
65 64 ex NFinRCRingMBsbB0sk0s+1<kk/nifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=0Y
66 65 ralrimiva NFinRCRingMBsbB0sk0s+1<kk/nifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=0Y
67 breq1 l=s+1l<ks+1<k
68 67 rspceaimv s+10k0s+1<kk/nifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=0Yl0k0l<kk/nifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=0Y
69 22 66 68 syl2anc NFinRCRingMBsbB0sl0k0l<kk/nifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=0Y
70 10 18 69 mptnn0fsupp NFinRCRingMBsbB0sfinSupp0Yn0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
71 9 70 eqbrtrid NFinRCRingMBsbB0sfinSupp0YG