Step |
Hyp |
Ref |
Expression |
1 |
|
chirred.1 |
|
2 |
|
atelch |
|
3 |
|
chjcom |
|
4 |
2 3
|
sylan |
|
5 |
4
|
ad2ant2r |
|
6 |
5
|
adantr |
|
7 |
6
|
ineq2d |
|
8 |
|
atelch |
|
9 |
|
choccl |
|
10 |
8 9
|
syl |
|
11 |
|
id |
|
12 |
10 11 2
|
3anim123i |
|
13 |
12
|
3com13 |
|
14 |
13
|
3expa |
|
15 |
14
|
adantllr |
|
16 |
15
|
adantlrr |
|
17 |
16
|
adantrr |
|
18 |
17
|
adantrr |
|
19 |
|
simpll |
|
20 |
10
|
ad2antrl |
|
21 |
|
chsscon3 |
|
22 |
8 1 21
|
sylancl |
|
23 |
22
|
biimpa |
|
24 |
|
sstr |
|
25 |
23 24
|
sylan2 |
|
26 |
25
|
adantll |
|
27 |
|
lecm |
|
28 |
19 20 26 27
|
syl3anc |
|
29 |
28
|
ad2ant2lr |
|
30 |
|
chsscon3 |
|
31 |
1 30
|
mpan2 |
|
32 |
31
|
biimpa |
|
33 |
|
sstr |
|
34 |
32 33
|
sylan2 |
|
35 |
34
|
an12s |
|
36 |
35
|
ancom2s |
|
37 |
36
|
adantll |
|
38 |
|
choccl |
|
39 |
|
lecm |
|
40 |
38 39
|
syl3an2 |
|
41 |
40
|
3expia |
|
42 |
|
cmcm2 |
|
43 |
41 42
|
sylibrd |
|
44 |
43
|
adantr |
|
45 |
37 44
|
mpd |
|
46 |
2 45
|
sylanl2 |
|
47 |
46
|
ancom1s |
|
48 |
47
|
an4s |
|
49 |
48
|
adantr |
|
50 |
|
fh2 |
|
51 |
18 29 49 50
|
syl12anc |
|
52 |
|
sseqin2 |
|
53 |
26 52
|
sylib |
|
54 |
53
|
ad2ant2lr |
|
55 |
|
incom |
|
56 |
1
|
chirredlem1 |
|
57 |
56
|
adantllr |
|
58 |
55 57
|
eqtrid |
|
59 |
54 58
|
oveq12d |
|
60 |
|
chj0 |
|
61 |
60
|
adantr |
|
62 |
61
|
ad2antlr |
|
63 |
59 62
|
eqtrd |
|
64 |
7 51 63
|
3eqtrd |
|