Metamath Proof Explorer


Theorem chordthmlem2

Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem , where P = B, and using angrtmuld to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses chordthmlem2.angdef F=x0,y0logyx
chordthmlem2.A φA
chordthmlem2.B φB
chordthmlem2.Q φQ
chordthmlem2.X φX
chordthmlem2.M φM=A+B2
chordthmlem2.P φP=XA+1XB
chordthmlem2.ABequidistQ φAQ=BQ
chordthmlem2.PneM φPM
chordthmlem2.QneM φQM
Assertion chordthmlem2 φQMFPMπ2π2

Proof

Step Hyp Ref Expression
1 chordthmlem2.angdef F=x0,y0logyx
2 chordthmlem2.A φA
3 chordthmlem2.B φB
4 chordthmlem2.Q φQ
5 chordthmlem2.X φX
6 chordthmlem2.M φM=A+B2
7 chordthmlem2.P φP=XA+1XB
8 chordthmlem2.ABequidistQ φAQ=BQ
9 chordthmlem2.PneM φPM
10 chordthmlem2.QneM φQM
11 2re 2
12 11 a1i φ2
13 2ne0 20
14 13 a1i φ20
15 12 14 rereccld φ12
16 15 5 resubcld φ12X
17 16 recnd φ12X
18 3 2 subcld φBA
19 15 recnd φ12
20 5 recnd φX
21 19 20 18 subdird φ12XBA=12BAXBA
22 2cnd φ2
23 3 22 14 divcan4d φB22=B
24 3 times2d φB2=B+B
25 24 oveq1d φB22=B+B2
26 23 25 eqtr3d φB=B+B2
27 26 6 oveq12d φBM=B+B2A+B2
28 3 3 addcld φB+B
29 2 3 addcld φA+B
30 28 29 22 14 divsubdird φB+B-A+B2=B+B2A+B2
31 3 2 3 pnpcan2d φB+B-A+B=BA
32 31 oveq1d φB+B-A+B2=BA2
33 27 30 32 3eqtr2d φBM=BA2
34 18 22 14 divrec2d φBA2=12BA
35 33 34 eqtrd φBM=12BA
36 20 2 mulcld φXA
37 1cnd φ1
38 37 20 subcld φ1X
39 38 3 mulcld φ1XB
40 36 39 addcld φXA+1XB
41 7 40 eqeltrd φP
42 2 41 3 20 affineequiv φP=XA+1XBBP=XBA
43 7 42 mpbid φBP=XBA
44 35 43 oveq12d φB-M-BP=12BAXBA
45 29 halfcld φA+B2
46 6 45 eqeltrd φM
47 3 46 41 nnncan1d φB-M-BP=PM
48 21 44 47 3eqtr2rd φPM=12XBA
49 41 46 9 subne0d φPM0
50 48 49 eqnetrrd φ12XBA0
51 17 18 50 mulne0bbd φBA0
52 3 2 51 subne0ad φBA
53 52 necomd φAB
54 1 2 3 4 6 8 53 10 chordthmlem φQMFBMπ2π2
55 4 46 subcld φQM
56 41 46 subcld φPM
57 3 46 subcld φBM
58 4 46 10 subne0d φQM0
59 22 14 recne0d φ120
60 19 18 59 51 mulne0d φ12BA0
61 35 60 eqnetrd φBM0
62 35 48 oveq12d φBMPM=12BA12XBA
63 17 18 50 mulne0bad φ12X0
64 19 17 18 63 51 divcan5rd φ12BA12XBA=1212X
65 62 64 eqtrd φBMPM=1212X
66 15 16 63 redivcld φ1212X
67 65 66 eqeltrd φBMPM
68 1 55 56 57 58 49 61 67 angrtmuld φQMFPMπ2π2QMFBMπ2π2
69 54 68 mpbird φQMFPMπ2π2