| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpmat1d.c |
|
| 2 |
|
chpmat1d.p |
|
| 3 |
|
chpmat1d.a |
|
| 4 |
|
chpmat1d.b |
|
| 5 |
|
chpmat1d.x |
|
| 6 |
|
chpmat1d.z |
|
| 7 |
|
chpmat1d.s |
|
| 8 |
|
snfi |
|
| 9 |
|
eleq1 |
|
| 10 |
8 9
|
mpbiri |
|
| 11 |
10
|
adantr |
|
| 12 |
11
|
3ad2ant2 |
|
| 13 |
|
simp1 |
|
| 14 |
|
simp3 |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
1 3 4 2 15 16 17 18 19 20 21
|
chpmatval |
|
| 23 |
12 13 14 22
|
syl3anc |
|
| 24 |
2
|
ply1crng |
|
| 25 |
24
|
3ad2ant1 |
|
| 26 |
|
simp2 |
|
| 27 |
|
crngring |
|
| 28 |
2
|
ply1ring |
|
| 29 |
27 28
|
syl |
|
| 30 |
29
|
3ad2ant1 |
|
| 31 |
15
|
matring |
|
| 32 |
12 30 31
|
syl2anc |
|
| 33 |
|
ringgrp |
|
| 34 |
32 33
|
syl |
|
| 35 |
15
|
matlmod |
|
| 36 |
12 30 35
|
syl2anc |
|
| 37 |
27
|
3ad2ant1 |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
18 38 39
|
vr1cl |
|
| 41 |
37 40
|
syl |
|
| 42 |
38
|
ply1crng |
|
| 43 |
42
|
3ad2ant1 |
|
| 44 |
2
|
oveq2i |
|
| 45 |
44
|
matsca2 |
|
| 46 |
12 43 45
|
syl2anc |
|
| 47 |
46
|
eqcomd |
|
| 48 |
47
|
fveq2d |
|
| 49 |
41 48
|
eleqtrrd |
|
| 50 |
|
eqid |
|
| 51 |
50 21
|
ringidcl |
|
| 52 |
32 51
|
syl |
|
| 53 |
|
eqid |
|
| 54 |
|
eqid |
|
| 55 |
50 53 19 54
|
lmodvscl |
|
| 56 |
36 49 52 55
|
syl3anc |
|
| 57 |
20 3 4 2 15
|
mat2pmatbas |
|
| 58 |
12 37 14 57
|
syl3anc |
|
| 59 |
50 17
|
grpsubcl |
|
| 60 |
34 56 58 59
|
syl3anc |
|
| 61 |
16 15 50
|
m1detdiag |
|
| 62 |
25 26 60 61
|
syl3anc |
|
| 63 |
5
|
eqcomi |
|
| 64 |
63
|
a1i |
|
| 65 |
64
|
oveq1d |
|
| 66 |
65
|
oveq1d |
|
| 67 |
66
|
oveqd |
|
| 68 |
1 2 3 4 5 6 7 15 20
|
chpmat1dlem |
|
| 69 |
27 68
|
syl3an1 |
|
| 70 |
67 69
|
eqtrd |
|
| 71 |
62 70
|
eqtrd |
|
| 72 |
23 71
|
eqtrd |
|