Metamath Proof Explorer


Theorem cidpropd

Description: Two structures with the same base, hom-sets and composition operation have the same identity function. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses catpropd.1 φHom𝑓C=Hom𝑓D
catpropd.2 φcomp𝑓C=comp𝑓D
catpropd.3 φCV
catpropd.4 φDW
Assertion cidpropd φIdC=IdD

Proof

Step Hyp Ref Expression
1 catpropd.1 φHom𝑓C=Hom𝑓D
2 catpropd.2 φcomp𝑓C=comp𝑓D
3 catpropd.3 φCV
4 catpropd.4 φDW
5 1 homfeqbas φBaseC=BaseD
6 5 adantr φCCatBaseC=BaseD
7 eqid BaseC=BaseC
8 eqid HomC=HomC
9 eqid HomD=HomD
10 1 ad4antr φCCatxBaseCgxHomCxyBaseCHom𝑓C=Hom𝑓D
11 simpr φCCatxBaseCgxHomCxyBaseCyBaseC
12 simpllr φCCatxBaseCgxHomCxyBaseCxBaseC
13 7 8 9 10 11 12 homfeqval φCCatxBaseCgxHomCxyBaseCyHomCx=yHomDx
14 eqid compC=compC
15 eqid compD=compD
16 1 ad5antr φCCatxBaseCgxHomCxyBaseCfyHomCxHom𝑓C=Hom𝑓D
17 2 ad5antr φCCatxBaseCgxHomCxyBaseCfyHomCxcomp𝑓C=comp𝑓D
18 simplr φCCatxBaseCgxHomCxyBaseCfyHomCxyBaseC
19 simp-4r φCCatxBaseCgxHomCxyBaseCfyHomCxxBaseC
20 simpr φCCatxBaseCgxHomCxyBaseCfyHomCxfyHomCx
21 simpllr φCCatxBaseCgxHomCxyBaseCfyHomCxgxHomCx
22 7 8 14 15 16 17 18 19 19 20 21 comfeqval φCCatxBaseCgxHomCxyBaseCfyHomCxgyxcompCxf=gyxcompDxf
23 22 eqeq1d φCCatxBaseCgxHomCxyBaseCfyHomCxgyxcompCxf=fgyxcompDxf=f
24 13 23 raleqbidva φCCatxBaseCgxHomCxyBaseCfyHomCxgyxcompCxf=ffyHomDxgyxcompDxf=f
25 7 8 9 10 12 11 homfeqval φCCatxBaseCgxHomCxyBaseCxHomCy=xHomDy
26 10 adantr φCCatxBaseCgxHomCxyBaseCfxHomCyHom𝑓C=Hom𝑓D
27 2 ad5antr φCCatxBaseCgxHomCxyBaseCfxHomCycomp𝑓C=comp𝑓D
28 12 adantr φCCatxBaseCgxHomCxyBaseCfxHomCyxBaseC
29 simplr φCCatxBaseCgxHomCxyBaseCfxHomCyyBaseC
30 simpllr φCCatxBaseCgxHomCxyBaseCfxHomCygxHomCx
31 simpr φCCatxBaseCgxHomCxyBaseCfxHomCyfxHomCy
32 7 8 14 15 26 27 28 28 29 30 31 comfeqval φCCatxBaseCgxHomCxyBaseCfxHomCyfxxcompCyg=fxxcompDyg
33 32 eqeq1d φCCatxBaseCgxHomCxyBaseCfxHomCyfxxcompCyg=ffxxcompDyg=f
34 25 33 raleqbidva φCCatxBaseCgxHomCxyBaseCfxHomCyfxxcompCyg=ffxHomDyfxxcompDyg=f
35 24 34 anbi12d φCCatxBaseCgxHomCxyBaseCfyHomCxgyxcompCxf=ffxHomCyfxxcompCyg=ffyHomDxgyxcompDxf=ffxHomDyfxxcompDyg=f
36 35 ralbidva φCCatxBaseCgxHomCxyBaseCfyHomCxgyxcompCxf=ffxHomCyfxxcompCyg=fyBaseCfyHomDxgyxcompDxf=ffxHomDyfxxcompDyg=f
37 36 riotabidva φCCatxBaseCιgxHomCx|yBaseCfyHomCxgyxcompCxf=ffxHomCyfxxcompCyg=f=ιgxHomCx|yBaseCfyHomDxgyxcompDxf=ffxHomDyfxxcompDyg=f
38 1 ad2antrr φCCatxBaseCHom𝑓C=Hom𝑓D
39 simpr φCCatxBaseCxBaseC
40 7 8 9 38 39 39 homfeqval φCCatxBaseCxHomCx=xHomDx
41 5 ad2antrr φCCatxBaseCBaseC=BaseD
42 41 raleqdv φCCatxBaseCyBaseCfyHomDxgyxcompDxf=ffxHomDyfxxcompDyg=fyBaseDfyHomDxgyxcompDxf=ffxHomDyfxxcompDyg=f
43 40 42 riotaeqbidv φCCatxBaseCιgxHomCx|yBaseCfyHomDxgyxcompDxf=ffxHomDyfxxcompDyg=f=ιgxHomDx|yBaseDfyHomDxgyxcompDxf=ffxHomDyfxxcompDyg=f
44 37 43 eqtrd φCCatxBaseCιgxHomCx|yBaseCfyHomCxgyxcompCxf=ffxHomCyfxxcompCyg=f=ιgxHomDx|yBaseDfyHomDxgyxcompDxf=ffxHomDyfxxcompDyg=f
45 6 44 mpteq12dva φCCatxBaseCιgxHomCx|yBaseCfyHomCxgyxcompCxf=ffxHomCyfxxcompCyg=f=xBaseDιgxHomDx|yBaseDfyHomDxgyxcompDxf=ffxHomDyfxxcompDyg=f
46 simpr φCCatCCat
47 eqid IdC=IdC
48 7 8 14 46 47 cidfval φCCatIdC=xBaseCιgxHomCx|yBaseCfyHomCxgyxcompCxf=ffxHomCyfxxcompCyg=f
49 eqid BaseD=BaseD
50 1 2 3 4 catpropd φCCatDCat
51 50 biimpa φCCatDCat
52 eqid IdD=IdD
53 49 9 15 51 52 cidfval φCCatIdD=xBaseDιgxHomDx|yBaseDfyHomDxgyxcompDxf=ffxHomDyfxxcompDyg=f
54 45 48 53 3eqtr4d φCCatIdC=IdD
55 simpr φ¬CCat¬CCat
56 cidffn IdFnCat
57 56 fndmi domId=Cat
58 57 eleq2i CdomIdCCat
59 55 58 sylnibr φ¬CCat¬CdomId
60 ndmfv ¬CdomIdIdC=
61 59 60 syl φ¬CCatIdC=
62 57 eleq2i DdomIdDCat
63 50 62 bitr4di φCCatDdomId
64 63 notbid φ¬CCat¬DdomId
65 64 biimpa φ¬CCat¬DdomId
66 ndmfv ¬DdomIdIdD=
67 65 66 syl φ¬CCatIdD=
68 61 67 eqtr4d φ¬CCatIdC=IdD
69 54 68 pm2.61dan φIdC=IdD