Description: A pairwise union of closures is the closure of the union. (Contributed by Jeff Hankins, 31-Aug-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clsun.1 | |
|
Assertion | clsun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsun.1 | |
|
2 | difundi | |
|
3 | 2 | fveq2i | |
4 | difss | |
|
5 | difss | |
|
6 | 1 | ntrin | |
7 | 4 5 6 | mp3an23 | |
8 | 7 | 3ad2ant1 | |
9 | 3 8 | eqtrid | |
10 | simp1 | |
|
11 | unss | |
|
12 | 11 | biimpi | |
13 | 12 | 3adant1 | |
14 | 1 | ntrdif | |
15 | 10 13 14 | syl2anc | |
16 | 1 | ntrdif | |
17 | 16 | 3adant3 | |
18 | 1 | ntrdif | |
19 | 18 | 3adant2 | |
20 | 17 19 | ineq12d | |
21 | difundi | |
|
22 | 20 21 | eqtr4di | |
23 | 9 15 22 | 3eqtr3d | |
24 | 23 | difeq2d | |
25 | 1 | clscld | |
26 | 10 13 25 | syl2anc | |
27 | 1 | cldss | |
28 | 26 27 | syl | |
29 | dfss4 | |
|
30 | 28 29 | sylib | |
31 | 1 | clsss3 | |
32 | 31 | 3adant3 | |
33 | 1 | clsss3 | |
34 | 33 | 3adant2 | |
35 | 32 34 | jca | |
36 | unss | |
|
37 | dfss4 | |
|
38 | 36 37 | bitri | |
39 | 35 38 | sylib | |
40 | 24 30 39 | 3eqtr3d | |