| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lencl |
|
| 2 |
|
nn0cn |
|
| 3 |
|
peano2cnm |
|
| 4 |
3
|
subid1d |
|
| 5 |
4
|
oveq1d |
|
| 6 |
|
sub1m1 |
|
| 7 |
5 6
|
eqtrd |
|
| 8 |
1 2 7
|
3syl |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
oveq2d |
|
| 11 |
10
|
raleqdv |
|
| 12 |
11
|
biimpcd |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
adantl |
|
| 15 |
14
|
impcom |
|
| 16 |
|
lsw |
|
| 17 |
|
2m1e1 |
|
| 18 |
17
|
a1i |
|
| 19 |
18
|
eqcomd |
|
| 20 |
19
|
oveq2d |
|
| 21 |
1 2
|
syl |
|
| 22 |
|
2cnd |
|
| 23 |
|
1cnd |
|
| 24 |
21 22 23
|
subsubd |
|
| 25 |
20 24
|
eqtrd |
|
| 26 |
25
|
fveq2d |
|
| 27 |
16 26
|
eqtrd |
|
| 28 |
27
|
adantr |
|
| 29 |
28
|
adantr |
|
| 30 |
|
eqeq1 |
|
| 31 |
30
|
adantl |
|
| 32 |
29 31
|
mpbid |
|
| 33 |
32
|
preq2d |
|
| 34 |
33
|
eleq1d |
|
| 35 |
34
|
biimpd |
|
| 36 |
35
|
ex |
|
| 37 |
36
|
com13 |
|
| 38 |
37
|
adantl |
|
| 39 |
38
|
impcom |
|
| 40 |
39
|
impcom |
|
| 41 |
|
ovexd |
|
| 42 |
|
fveq2 |
|
| 43 |
|
fvoveq1 |
|
| 44 |
42 43
|
preq12d |
|
| 45 |
44
|
eleq1d |
|
| 46 |
45
|
ralunsn |
|
| 47 |
41 46
|
syl |
|
| 48 |
15 40 47
|
mpbir2and |
|
| 49 |
|
1e2m1 |
|
| 50 |
49
|
a1i |
|
| 51 |
50
|
oveq2d |
|
| 52 |
51 24
|
eqtrd |
|
| 53 |
52
|
oveq2d |
|
| 54 |
53
|
adantr |
|
| 55 |
|
nn0re |
|
| 56 |
|
2re |
|
| 57 |
56
|
a1i |
|
| 58 |
55 57
|
subge0d |
|
| 59 |
58
|
biimprd |
|
| 60 |
|
nn0z |
|
| 61 |
|
2z |
|
| 62 |
61
|
a1i |
|
| 63 |
60 62
|
zsubcld |
|
| 64 |
59 63
|
jctild |
|
| 65 |
1 64
|
syl |
|
| 66 |
65
|
imp |
|
| 67 |
|
elnn0z |
|
| 68 |
66 67
|
sylibr |
|
| 69 |
|
elnn0uz |
|
| 70 |
68 69
|
sylib |
|
| 71 |
|
fzosplitsn |
|
| 72 |
70 71
|
syl |
|
| 73 |
54 72
|
eqtrd |
|
| 74 |
73
|
adantr |
|
| 75 |
48 74
|
raleqtrrdv |
|
| 76 |
75
|
ex |
|