Metamath Proof Explorer


Theorem cnfldfunALTOLD

Description: Obsolete proof of cnfldfunALT as of 10-Nov-2024. The field of complex numbers is a function. (Contributed by AV, 14-Nov-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cnfldfunALTOLD Funfld

Proof

Step Hyp Ref Expression
1 basendxnplusgndx Basendx+ndx
2 basendxnmulrndx Basendxndx
3 plusgndxnmulrndx +ndxndx
4 fvex BasendxV
5 fvex +ndxV
6 fvex ndxV
7 cnex V
8 addex +V
9 mulex ×V
10 4 5 6 7 8 9 funtp Basendx+ndxBasendxndx+ndxndxFunBasendx+ndx+ndx×
11 1 2 3 10 mp3an FunBasendx+ndx+ndx×
12 fvex *ndxV
13 cjf *:
14 fex *:V*V
15 13 7 14 mp2an *V
16 12 15 funsn Fun*ndx*
17 11 16 pm3.2i FunBasendx+ndx+ndx×Fun*ndx*
18 7 8 9 dmtpop domBasendx+ndx+ndx×=Basendx+ndxndx
19 15 dmsnop dom*ndx*=*ndx
20 18 19 ineq12i domBasendx+ndx+ndx×dom*ndx*=Basendx+ndxndx*ndx
21 basendx Basendx=1
22 1re 1
23 1lt4 1<4
24 22 23 ltneii 14
25 starvndx *ndx=4
26 24 25 neeqtrri 1*ndx
27 21 26 eqnetri Basendx*ndx
28 plusgndx +ndx=2
29 2re 2
30 2lt4 2<4
31 29 30 ltneii 24
32 31 25 neeqtrri 2*ndx
33 28 32 eqnetri +ndx*ndx
34 mulrndx ndx=3
35 3re 3
36 3lt4 3<4
37 35 36 ltneii 34
38 37 25 neeqtrri 3*ndx
39 34 38 eqnetri ndx*ndx
40 disjtpsn Basendx*ndx+ndx*ndxndx*ndxBasendx+ndxndx*ndx=
41 27 33 39 40 mp3an Basendx+ndxndx*ndx=
42 20 41 eqtri domBasendx+ndx+ndx×dom*ndx*=
43 funun FunBasendx+ndx+ndx×Fun*ndx*domBasendx+ndx+ndx×dom*ndx*=FunBasendx+ndx+ndx×*ndx*
44 17 42 43 mp2an FunBasendx+ndx+ndx×*ndx*
45 tsetndx TopSetndx=9
46 9re 9
47 9lt10 9<10
48 46 47 ltneii 910
49 plendx ndx=10
50 48 49 neeqtrri 9ndx
51 45 50 eqnetri TopSetndxndx
52 1nn 1
53 2nn0 20
54 9nn0 90
55 46 leidi 99
56 52 53 54 55 decltdi 9<12
57 46 56 ltneii 912
58 dsndx distndx=12
59 57 58 neeqtrri 9distndx
60 45 59 eqnetri TopSetndxdistndx
61 10re 10
62 1nn0 10
63 0nn0 00
64 2nn 2
65 2pos 0<2
66 62 63 64 65 declt 10<12
67 61 66 ltneii 1012
68 67 58 neeqtrri 10distndx
69 49 68 eqnetri ndxdistndx
70 fvex TopSetndxV
71 fvex ndxV
72 fvex distndxV
73 fvex MetOpenabsV
74 letsr TosetRel
75 74 elexi V
76 absf abs:
77 fex abs:VabsV
78 76 7 77 mp2an absV
79 subf :×
80 7 7 xpex ×V
81 fex :××VV
82 79 80 81 mp2an V
83 78 82 coex absV
84 70 71 72 73 75 83 funtp TopSetndxndxTopSetndxdistndxndxdistndxFunTopSetndxMetOpenabsndxdistndxabs
85 51 60 69 84 mp3an FunTopSetndxMetOpenabsndxdistndxabs
86 fvex UnifSetndxV
87 fvex metUnifabsV
88 86 87 funsn FunUnifSetndxmetUnifabs
89 85 88 pm3.2i FunTopSetndxMetOpenabsndxdistndxabsFunUnifSetndxmetUnifabs
90 73 75 83 dmtpop domTopSetndxMetOpenabsndxdistndxabs=TopSetndxndxdistndx
91 87 dmsnop domUnifSetndxmetUnifabs=UnifSetndx
92 90 91 ineq12i domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=TopSetndxndxdistndxUnifSetndx
93 3nn0 30
94 52 93 54 55 decltdi 9<13
95 46 94 ltneii 913
96 unifndx UnifSetndx=13
97 95 96 neeqtrri 9UnifSetndx
98 45 97 eqnetri TopSetndxUnifSetndx
99 3nn 3
100 3pos 0<3
101 62 63 99 100 declt 10<13
102 61 101 ltneii 1013
103 102 96 neeqtrri 10UnifSetndx
104 49 103 eqnetri ndxUnifSetndx
105 62 53 deccl 120
106 105 nn0rei 12
107 2lt3 2<3
108 62 53 99 107 declt 12<13
109 106 108 ltneii 1213
110 109 96 neeqtrri 12UnifSetndx
111 58 110 eqnetri distndxUnifSetndx
112 disjtpsn TopSetndxUnifSetndxndxUnifSetndxdistndxUnifSetndxTopSetndxndxdistndxUnifSetndx=
113 98 104 111 112 mp3an TopSetndxndxdistndxUnifSetndx=
114 92 113 eqtri domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
115 funun FunTopSetndxMetOpenabsndxdistndxabsFunUnifSetndxmetUnifabsdomTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=FunTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
116 89 114 115 mp2an FunTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
117 44 116 pm3.2i FunBasendx+ndx+ndx×*ndx*FunTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
118 dmun domBasendx+ndx+ndx×*ndx*=domBasendx+ndx+ndx×dom*ndx*
119 dmun domTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs=domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs
120 118 119 ineq12i domBasendx+ndx+ndx×*ndx*domTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs=domBasendx+ndx+ndx×dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs
121 18 90 ineq12i domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabs=Basendx+ndxndxTopSetndxndxdistndx
122 1lt9 1<9
123 22 122 ltneii 19
124 123 45 neeqtrri 1TopSetndx
125 21 124 eqnetri BasendxTopSetndx
126 2lt9 2<9
127 29 126 ltneii 29
128 127 45 neeqtrri 2TopSetndx
129 28 128 eqnetri +ndxTopSetndx
130 3lt9 3<9
131 35 130 ltneii 39
132 131 45 neeqtrri 3TopSetndx
133 34 132 eqnetri ndxTopSetndx
134 125 129 133 3pm3.2i BasendxTopSetndx+ndxTopSetndxndxTopSetndx
135 1lt10 1<10
136 22 135 ltneii 110
137 136 49 neeqtrri 1ndx
138 21 137 eqnetri Basendxndx
139 2lt10 2<10
140 29 139 ltneii 210
141 140 49 neeqtrri 2ndx
142 28 141 eqnetri +ndxndx
143 3lt10 3<10
144 35 143 ltneii 310
145 144 49 neeqtrri 3ndx
146 34 145 eqnetri ndxndx
147 138 142 146 3pm3.2i Basendxndx+ndxndxndxndx
148 22 46 122 ltleii 19
149 52 53 62 148 decltdi 1<12
150 22 149 ltneii 112
151 150 58 neeqtrri 1distndx
152 21 151 eqnetri Basendxdistndx
153 29 46 126 ltleii 29
154 52 53 53 153 decltdi 2<12
155 29 154 ltneii 212
156 155 58 neeqtrri 2distndx
157 28 156 eqnetri +ndxdistndx
158 35 46 130 ltleii 39
159 52 53 93 158 decltdi 3<12
160 35 159 ltneii 312
161 160 58 neeqtrri 3distndx
162 34 161 eqnetri ndxdistndx
163 152 157 162 3pm3.2i Basendxdistndx+ndxdistndxndxdistndx
164 disjtp2 BasendxTopSetndx+ndxTopSetndxndxTopSetndxBasendxndx+ndxndxndxndxBasendxdistndx+ndxdistndxndxdistndxBasendx+ndxndxTopSetndxndxdistndx=
165 134 147 163 164 mp3an Basendx+ndxndxTopSetndxndxdistndx=
166 121 165 eqtri domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabs=
167 18 91 ineq12i domBasendx+ndx+ndx×domUnifSetndxmetUnifabs=Basendx+ndxndxUnifSetndx
168 52 93 62 148 decltdi 1<13
169 22 168 ltneii 113
170 169 96 neeqtrri 1UnifSetndx
171 21 170 eqnetri BasendxUnifSetndx
172 52 93 53 153 decltdi 2<13
173 29 172 ltneii 213
174 173 96 neeqtrri 2UnifSetndx
175 28 174 eqnetri +ndxUnifSetndx
176 52 93 93 158 decltdi 3<13
177 35 176 ltneii 313
178 177 96 neeqtrri 3UnifSetndx
179 34 178 eqnetri ndxUnifSetndx
180 disjtpsn BasendxUnifSetndx+ndxUnifSetndxndxUnifSetndxBasendx+ndxndxUnifSetndx=
181 171 175 179 180 mp3an Basendx+ndxndxUnifSetndx=
182 167 181 eqtri domBasendx+ndx+ndx×domUnifSetndxmetUnifabs=
183 166 182 pm3.2i domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabs=domBasendx+ndx+ndx×domUnifSetndxmetUnifabs=
184 undisj2 domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabs=domBasendx+ndx+ndx×domUnifSetndxmetUnifabs=domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
185 183 184 mpbi domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
186 19 90 ineq12i dom*ndx*domTopSetndxMetOpenabsndxdistndxabs=*ndxTopSetndxndxdistndx
187 incom *ndxTopSetndxndxdistndx=TopSetndxndxdistndx*ndx
188 4re 4
189 4lt9 4<9
190 188 189 gtneii 94
191 190 25 neeqtrri 9*ndx
192 45 191 eqnetri TopSetndx*ndx
193 4lt10 4<10
194 188 193 gtneii 104
195 194 25 neeqtrri 10*ndx
196 49 195 eqnetri ndx*ndx
197 4nn0 40
198 188 46 189 ltleii 49
199 52 53 197 198 decltdi 4<12
200 188 199 gtneii 124
201 200 25 neeqtrri 12*ndx
202 58 201 eqnetri distndx*ndx
203 disjtpsn TopSetndx*ndxndx*ndxdistndx*ndxTopSetndxndxdistndx*ndx=
204 192 196 202 203 mp3an TopSetndxndxdistndx*ndx=
205 187 204 eqtri *ndxTopSetndxndxdistndx=
206 186 205 eqtri dom*ndx*domTopSetndxMetOpenabsndxdistndxabs=
207 19 91 ineq12i dom*ndx*domUnifSetndxmetUnifabs=*ndxUnifSetndx
208 52 93 197 198 decltdi 4<13
209 188 208 ltneii 413
210 209 96 neeqtrri 4UnifSetndx
211 25 210 eqnetri *ndxUnifSetndx
212 disjsn2 *ndxUnifSetndx*ndxUnifSetndx=
213 211 212 ax-mp *ndxUnifSetndx=
214 207 213 eqtri dom*ndx*domUnifSetndxmetUnifabs=
215 206 214 pm3.2i dom*ndx*domTopSetndxMetOpenabsndxdistndxabs=dom*ndx*domUnifSetndxmetUnifabs=
216 undisj2 dom*ndx*domTopSetndxMetOpenabsndxdistndxabs=dom*ndx*domUnifSetndxmetUnifabs=dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
217 215 216 mpbi dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
218 185 217 pm3.2i domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
219 undisj1 domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=domBasendx+ndx+ndx×dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
220 218 219 mpbi domBasendx+ndx+ndx×dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
221 120 220 eqtri domBasendx+ndx+ndx×*ndx*domTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs=
222 funun FunBasendx+ndx+ndx×*ndx*FunTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabsdomBasendx+ndx+ndx×*ndx*domTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs=FunBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
223 117 221 222 mp2an FunBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
224 df-cnfld fld=Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
225 224 funeqi FunfldFunBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
226 223 225 mpbir Funfld