Metamath Proof Explorer


Theorem cnlnadjlem7

Description: Lemma for cnlnadji . Helper lemma to show that F is continuous. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 TLinOp
cnlnadjlem.2 TContOp
cnlnadjlem.3 G=gTgihy
cnlnadjlem.4 B=ιw|vTvihy=vihw
cnlnadjlem.5 F=yB
Assertion cnlnadjlem7 AnormFAnormopTnormA

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 TLinOp
2 cnlnadjlem.2 TContOp
3 cnlnadjlem.3 G=gTgihy
4 cnlnadjlem.4 B=ιw|vTvihy=vihw
5 cnlnadjlem.5 F=yB
6 breq1 normFA=0normFAnormopTnormA0normopTnormA
7 1 2 3 4 5 cnlnadjlem4 AFA
8 1 lnopfi T:
9 8 ffvelcdmi FATFA
10 7 9 syl ATFA
11 hicl TFAATFAihA
12 10 11 mpancom ATFAihA
13 12 abscld ATFAihA
14 normcl TFAnormTFA
15 10 14 syl AnormTFA
16 normcl AnormA
17 15 16 remulcld AnormTFAnormA
18 1 2 nmcopexi normopT
19 normcl FAnormFA
20 7 19 syl AnormFA
21 remulcl normopTnormFAnormopTnormFA
22 18 20 21 sylancr AnormopTnormFA
23 22 16 remulcld AnormopTnormFAnormA
24 bcs TFAATFAihAnormTFAnormA
25 10 24 mpancom ATFAihAnormTFAnormA
26 normge0 A0normA
27 1 2 nmcoplbi FAnormTFAnormopTnormFA
28 7 27 syl AnormTFAnormopTnormFA
29 15 22 16 26 28 lemul1ad AnormTFAnormAnormopTnormFAnormA
30 13 17 23 25 29 letrd ATFAihAnormopTnormFAnormA
31 1 2 3 4 5 cnlnadjlem5 AFATFAihA=FAihFA
32 7 31 mpdan ATFAihA=FAihFA
33 32 fveq2d ATFAihA=FAihFA
34 hiidrcl FAFAihFA
35 7 34 syl AFAihFA
36 hiidge0 FA0FAihFA
37 7 36 syl A0FAihFA
38 35 37 absidd AFAihFA=FAihFA
39 normsq FAnormFA2=FAihFA
40 7 39 syl AnormFA2=FAihFA
41 20 recnd AnormFA
42 41 sqvald AnormFA2=normFAnormFA
43 40 42 eqtr3d AFAihFA=normFAnormFA
44 33 38 43 3eqtrd ATFAihA=normFAnormFA
45 16 recnd AnormA
46 18 recni normopT
47 mul32 normopTnormFAnormAnormopTnormFAnormA=normopTnormAnormFA
48 46 47 mp3an1 normFAnormAnormopTnormFAnormA=normopTnormAnormFA
49 41 45 48 syl2anc AnormopTnormFAnormA=normopTnormAnormFA
50 30 44 49 3brtr3d AnormFAnormFAnormopTnormAnormFA
51 50 adantr AnormFA0normFAnormFAnormopTnormAnormFA
52 20 adantr AnormFA0normFA
53 remulcl normopTnormAnormopTnormA
54 18 16 53 sylancr AnormopTnormA
55 54 adantr AnormFA0normopTnormA
56 normge0 FA0normFA
57 0re 0
58 leltne 0normFA0normFA0<normFAnormFA0
59 57 58 mp3an1 normFA0normFA0<normFAnormFA0
60 19 56 59 syl2anc FA0<normFAnormFA0
61 60 biimpar FAnormFA00<normFA
62 7 61 sylan AnormFA00<normFA
63 lemul1 normFAnormopTnormAnormFA0<normFAnormFAnormopTnormAnormFAnormFAnormopTnormAnormFA
64 52 55 52 62 63 syl112anc AnormFA0normFAnormopTnormAnormFAnormFAnormopTnormAnormFA
65 51 64 mpbird AnormFA0normFAnormopTnormA
66 nmopge0 T:0normopT
67 8 66 ax-mp 0normopT
68 mulge0 normopT0normopTnormA0normA0normopTnormA
69 18 67 68 mpanl12 normA0normA0normopTnormA
70 16 26 69 syl2anc A0normopTnormA
71 6 65 70 pm2.61ne AnormFAnormopTnormA