Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to at least the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dgrub.1 | |
|
dgrub.2 | |
||
Assertion | coeid3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dgrub.1 | |
|
2 | dgrub.2 | |
|
3 | 1 2 | coeid2 | |
4 | 3 | 3adant2 | |
5 | fzss2 | |
|
6 | 5 | 3ad2ant2 | |
7 | elfznn0 | |
|
8 | 1 | coef3 | |
9 | 8 | 3ad2ant1 | |
10 | 9 | ffvelcdmda | |
11 | expcl | |
|
12 | 11 | 3ad2antl3 | |
13 | 10 12 | mulcld | |
14 | 7 13 | sylan2 | |
15 | eldifn | |
|
16 | 15 | adantl | |
17 | simpl1 | |
|
18 | eldifi | |
|
19 | elfzuz | |
|
20 | 18 19 | syl | |
21 | 20 | adantl | |
22 | nn0uz | |
|
23 | 21 22 | eleqtrrdi | |
24 | 1 2 | dgrub | |
25 | 24 | 3expia | |
26 | 17 23 25 | syl2anc | |
27 | simpl2 | |
|
28 | eluzel2 | |
|
29 | 27 28 | syl | |
30 | elfz5 | |
|
31 | 21 29 30 | syl2anc | |
32 | 26 31 | sylibrd | |
33 | 32 | necon1bd | |
34 | 16 33 | mpd | |
35 | 34 | oveq1d | |
36 | elfznn0 | |
|
37 | 18 36 | syl | |
38 | 37 12 | sylan2 | |
39 | 38 | mul02d | |
40 | 35 39 | eqtrd | |
41 | fzfid | |
|
42 | 6 14 40 41 | fsumss | |
43 | 4 42 | eqtrd | |