Metamath Proof Explorer


Theorem coeid3

Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to at least the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses dgrub.1 A=coeffF
dgrub.2 N=degF
Assertion coeid3 FPolySMNXFX=k=0MAkXk

Proof

Step Hyp Ref Expression
1 dgrub.1 A=coeffF
2 dgrub.2 N=degF
3 1 2 coeid2 FPolySXFX=k=0NAkXk
4 3 3adant2 FPolySMNXFX=k=0NAkXk
5 fzss2 MN0N0M
6 5 3ad2ant2 FPolySMNX0N0M
7 elfznn0 k0Nk0
8 1 coef3 FPolySA:0
9 8 3ad2ant1 FPolySMNXA:0
10 9 ffvelcdmda FPolySMNXk0Ak
11 expcl Xk0Xk
12 11 3ad2antl3 FPolySMNXk0Xk
13 10 12 mulcld FPolySMNXk0AkXk
14 7 13 sylan2 FPolySMNXk0NAkXk
15 eldifn k0M0N¬k0N
16 15 adantl FPolySMNXk0M0N¬k0N
17 simpl1 FPolySMNXk0M0NFPolyS
18 eldifi k0M0Nk0M
19 elfzuz k0Mk0
20 18 19 syl k0M0Nk0
21 20 adantl FPolySMNXk0M0Nk0
22 nn0uz 0=0
23 21 22 eleqtrrdi FPolySMNXk0M0Nk0
24 1 2 dgrub FPolySk0Ak0kN
25 24 3expia FPolySk0Ak0kN
26 17 23 25 syl2anc FPolySMNXk0M0NAk0kN
27 simpl2 FPolySMNXk0M0NMN
28 eluzel2 MNN
29 27 28 syl FPolySMNXk0M0NN
30 elfz5 k0Nk0NkN
31 21 29 30 syl2anc FPolySMNXk0M0Nk0NkN
32 26 31 sylibrd FPolySMNXk0M0NAk0k0N
33 32 necon1bd FPolySMNXk0M0N¬k0NAk=0
34 16 33 mpd FPolySMNXk0M0NAk=0
35 34 oveq1d FPolySMNXk0M0NAkXk=0Xk
36 elfznn0 k0Mk0
37 18 36 syl k0M0Nk0
38 37 12 sylan2 FPolySMNXk0M0NXk
39 38 mul02d FPolySMNXk0M0N0Xk=0
40 35 39 eqtrd FPolySMNXk0M0NAkXk=0
41 fzfid FPolySMNX0MFin
42 6 14 40 41 fsumss FPolySMNXk=0NAkXk=k=0MAkXk
43 4 42 eqtrd FPolySMNXFX=k=0MAkXk