Metamath Proof Explorer


Theorem colhp

Description: Half-plane relation for colinear points. Theorem 9.19 of Schwabhauser p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020)

Ref Expression
Hypotheses hpgid.p P=BaseG
hpgid.i I=ItvG
hpgid.l L=Line𝒢G
hpgid.g φG𝒢Tarski
hpgid.d φDranL
hpgid.a φAP
hpgid.o O=ab|aPDbPDtDtaIb
colopp.b φBP
colopp.p φCD
colopp.1 φCALBA=B
colhp.k K=hl𝒢G
Assertion colhp φAhp𝒢GDBAKCB¬AD

Proof

Step Hyp Ref Expression
1 hpgid.p P=BaseG
2 hpgid.i I=ItvG
3 hpgid.l L=Line𝒢G
4 hpgid.g φG𝒢Tarski
5 hpgid.d φDranL
6 hpgid.a φAP
7 hpgid.o O=ab|aPDbPDtDtaIb
8 colopp.b φBP
9 colopp.p φCD
10 colopp.1 φCALBA=B
11 colhp.k K=hl𝒢G
12 ancom AKCB¬AD¬ADAKCB
13 12 a1i φAKCB¬AD¬ADAKCB
14 4 adantr φ¬ADG𝒢Tarski
15 5 adantr φ¬ADDranL
16 8 adantr φ¬ADBP
17 eqid distG=distG
18 eqid pInv𝒢G=pInv𝒢G
19 1 3 2 4 5 9 tglnpt φCP
20 eqid pInv𝒢GC=pInv𝒢GC
21 1 17 2 3 18 4 19 20 6 mircl φpInv𝒢GCAP
22 21 adantr φ¬ADpInv𝒢GCAP
23 9 adantr φ¬ADCD
24 19 adantr φ¬ADCP
25 6 adantr φ¬ADAP
26 nelne2 CD¬ADCA
27 9 26 sylan φ¬ADCA
28 27 necomd φ¬ADAC
29 1 17 2 3 18 4 19 20 6 mirbtwn φCpInv𝒢GCAIA
30 1 17 2 4 21 19 6 29 tgbtwncom φCAIpInv𝒢GCA
31 30 adantr φ¬ADCAIpInv𝒢GCA
32 1 2 3 14 25 24 22 28 31 btwnlng3 φ¬ADpInv𝒢GCAALC
33 1 3 2 4 6 8 19 10 colrot1 φABLCB=C
34 1 3 2 4 8 19 6 33 colcom φACLBC=B
35 34 adantr φ¬ADACLBC=B
36 1 2 3 14 22 25 24 16 32 35 coltr φ¬ADpInv𝒢GCACLBC=B
37 1 3 2 14 24 16 22 36 colrot1 φ¬ADCBLpInv𝒢GCAB=pInv𝒢GCA
38 1 2 3 14 15 16 7 22 23 37 colopp φ¬ADBOpInv𝒢GCACBIpInv𝒢GCA¬BD¬pInv𝒢GCAD
39 simpr φ¬AD¬AD
40 1 17 2 3 18 4 19 20 6 mirmir φpInv𝒢GCpInv𝒢GCA=A
41 40 adantr φpInv𝒢GCADpInv𝒢GCpInv𝒢GCA=A
42 4 adantr φpInv𝒢GCADG𝒢Tarski
43 5 adantr φpInv𝒢GCADDranL
44 9 adantr φpInv𝒢GCADCD
45 simpr φpInv𝒢GCADpInv𝒢GCAD
46 1 17 2 3 18 42 20 43 44 45 mirln φpInv𝒢GCADpInv𝒢GCpInv𝒢GCAD
47 41 46 eqeltrrd φpInv𝒢GCADAD
48 47 stoic1a φ¬AD¬pInv𝒢GCAD
49 simpr φt=Ct=C
50 49 eleq1d φt=CtAIpInv𝒢GCACAIpInv𝒢GCA
51 9 50 30 rspcedvd φtDtAIpInv𝒢GCA
52 51 adantr φ¬ADtDtAIpInv𝒢GCA
53 39 48 52 jca31 φ¬AD¬AD¬pInv𝒢GCADtDtAIpInv𝒢GCA
54 1 17 2 7 25 22 islnopp φ¬ADAOpInv𝒢GCA¬AD¬pInv𝒢GCADtDtAIpInv𝒢GCA
55 53 54 mpbird φ¬ADAOpInv𝒢GCA
56 1 2 3 7 14 15 25 16 22 55 lnopp2hpgb φ¬ADBOpInv𝒢GCAAhp𝒢GDB
57 8 ad2antrr φ¬ADCBIpInv𝒢GCA¬BDBP
58 6 ad2antrr φ¬ADCBIpInv𝒢GCA¬BDAP
59 19 ad2antrr φ¬ADCBIpInv𝒢GCA¬BDCP
60 4 ad2antrr φ¬ADCBIpInv𝒢GCA¬BDG𝒢Tarski
61 9 ad2antrr φ¬ADCBIpInv𝒢GCA¬BDCD
62 simprr φ¬ADCBIpInv𝒢GCA¬BD¬BD
63 nelne2 CD¬BDCB
64 63 necomd CD¬BDBC
65 61 62 64 syl2anc φ¬ADCBIpInv𝒢GCA¬BDBC
66 28 adantr φ¬ADCBIpInv𝒢GCA¬BDAC
67 simprl φ¬ADCBIpInv𝒢GCA¬BDCBIpInv𝒢GCA
68 1 17 2 3 18 60 20 11 59 57 58 58 65 66 67 mirhl2 φ¬ADCBIpInv𝒢GCA¬BDBKCA
69 1 2 11 57 58 59 60 68 hlcomd φ¬ADCBIpInv𝒢GCA¬BDAKCB
70 69 3adantr3 φ¬ADCBIpInv𝒢GCA¬BD¬pInv𝒢GCADAKCB
71 6 ad2antrr φ¬ADAKCBAP
72 8 ad2antrr φ¬ADAKCBBP
73 21 ad2antrr φ¬ADAKCBpInv𝒢GCAP
74 4 ad2antrr φ¬ADAKCBG𝒢Tarski
75 19 ad2antrr φ¬ADAKCBCP
76 simpr φ¬ADAKCBAKCB
77 30 ad2antrr φ¬ADAKCBCAIpInv𝒢GCA
78 1 2 11 71 72 73 74 75 76 77 btwnhl φ¬ADAKCBCBIpInv𝒢GCA
79 1 2 11 71 72 75 74 3 76 hlln φ¬ADAKCBABLC
80 79 adantr φ¬ADAKCBBDABLC
81 14 ad2antrr φ¬ADAKCBBDG𝒢Tarski
82 16 ad2antrr φ¬ADAKCBBDBP
83 75 adantr φ¬ADAKCBBDCP
84 25 ad2antrr φ¬ADAKCBBDAP
85 76 adantr φ¬ADAKCBBDAKCB
86 1 2 11 84 82 83 81 85 hlne2 φ¬ADAKCBBDBC
87 15 ad2antrr φ¬ADAKCBBDDranL
88 simpr φ¬ADAKCBBDBD
89 9 ad3antrrr φ¬ADAKCBBDCD
90 1 2 3 81 82 83 86 86 87 88 89 tglinethru φ¬ADAKCBBDD=BLC
91 80 90 eleqtrrd φ¬ADAKCBBDAD
92 39 ad2antrr φ¬ADAKCBBD¬AD
93 91 92 pm2.65da φ¬ADAKCB¬BD
94 48 adantr φ¬ADAKCB¬pInv𝒢GCAD
95 78 93 94 3jca φ¬ADAKCBCBIpInv𝒢GCA¬BD¬pInv𝒢GCAD
96 70 95 impbida φ¬ADCBIpInv𝒢GCA¬BD¬pInv𝒢GCADAKCB
97 38 56 96 3bitr3d φ¬ADAhp𝒢GDBAKCB
98 97 pm5.32da φ¬ADAhp𝒢GDB¬ADAKCB
99 simprr φ¬ADAhp𝒢GDBAhp𝒢GDB
100 4 adantr φAhp𝒢GDBG𝒢Tarski
101 5 adantr φAhp𝒢GDBDranL
102 6 adantr φAhp𝒢GDBAP
103 8 adantr φAhp𝒢GDBBP
104 simpr φAhp𝒢GDBAhp𝒢GDB
105 1 2 3 7 100 101 102 103 104 hpgne1 φAhp𝒢GDB¬AD
106 105 104 jca φAhp𝒢GDB¬ADAhp𝒢GDB
107 99 106 impbida φ¬ADAhp𝒢GDBAhp𝒢GDB
108 13 98 107 3bitr2rd φAhp𝒢GDBAKCB¬AD