| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpgid.p |
|
| 2 |
|
hpgid.i |
|
| 3 |
|
hpgid.l |
|
| 4 |
|
hpgid.g |
|
| 5 |
|
hpgid.d |
|
| 6 |
|
hpgid.a |
|
| 7 |
|
hpgid.o |
|
| 8 |
|
colopp.b |
|
| 9 |
|
colopp.p |
|
| 10 |
|
colopp.1 |
|
| 11 |
|
colhp.k |
|
| 12 |
|
ancom |
|
| 13 |
12
|
a1i |
|
| 14 |
4
|
adantr |
|
| 15 |
5
|
adantr |
|
| 16 |
8
|
adantr |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
1 3 2 4 5 9
|
tglnpt |
|
| 20 |
|
eqid |
|
| 21 |
1 17 2 3 18 4 19 20 6
|
mircl |
|
| 22 |
21
|
adantr |
|
| 23 |
9
|
adantr |
|
| 24 |
19
|
adantr |
|
| 25 |
6
|
adantr |
|
| 26 |
|
nelne2 |
|
| 27 |
9 26
|
sylan |
|
| 28 |
27
|
necomd |
|
| 29 |
1 17 2 3 18 4 19 20 6
|
mirbtwn |
|
| 30 |
1 17 2 4 21 19 6 29
|
tgbtwncom |
|
| 31 |
30
|
adantr |
|
| 32 |
1 2 3 14 25 24 22 28 31
|
btwnlng3 |
|
| 33 |
1 3 2 4 6 8 19 10
|
colrot1 |
|
| 34 |
1 3 2 4 8 19 6 33
|
colcom |
|
| 35 |
34
|
adantr |
|
| 36 |
1 2 3 14 22 25 24 16 32 35
|
coltr |
|
| 37 |
1 3 2 14 24 16 22 36
|
colrot1 |
|
| 38 |
1 2 3 14 15 16 7 22 23 37
|
colopp |
|
| 39 |
|
simpr |
|
| 40 |
1 17 2 3 18 4 19 20 6
|
mirmir |
|
| 41 |
40
|
adantr |
|
| 42 |
4
|
adantr |
|
| 43 |
5
|
adantr |
|
| 44 |
9
|
adantr |
|
| 45 |
|
simpr |
|
| 46 |
1 17 2 3 18 42 20 43 44 45
|
mirln |
|
| 47 |
41 46
|
eqeltrrd |
|
| 48 |
47
|
stoic1a |
|
| 49 |
|
simpr |
|
| 50 |
49
|
eleq1d |
|
| 51 |
9 50 30
|
rspcedvd |
|
| 52 |
51
|
adantr |
|
| 53 |
39 48 52
|
jca31 |
|
| 54 |
1 17 2 7 25 22
|
islnopp |
|
| 55 |
53 54
|
mpbird |
|
| 56 |
1 2 3 7 14 15 25 16 22 55
|
lnopp2hpgb |
|
| 57 |
8
|
ad2antrr |
|
| 58 |
6
|
ad2antrr |
|
| 59 |
19
|
ad2antrr |
|
| 60 |
4
|
ad2antrr |
|
| 61 |
9
|
ad2antrr |
|
| 62 |
|
simprr |
|
| 63 |
|
nelne2 |
|
| 64 |
63
|
necomd |
|
| 65 |
61 62 64
|
syl2anc |
|
| 66 |
28
|
adantr |
|
| 67 |
|
simprl |
|
| 68 |
1 17 2 3 18 60 20 11 59 57 58 58 65 66 67
|
mirhl2 |
|
| 69 |
1 2 11 57 58 59 60 68
|
hlcomd |
|
| 70 |
69
|
3adantr3 |
|
| 71 |
6
|
ad2antrr |
|
| 72 |
8
|
ad2antrr |
|
| 73 |
21
|
ad2antrr |
|
| 74 |
4
|
ad2antrr |
|
| 75 |
19
|
ad2antrr |
|
| 76 |
|
simpr |
|
| 77 |
30
|
ad2antrr |
|
| 78 |
1 2 11 71 72 73 74 75 76 77
|
btwnhl |
|
| 79 |
1 2 11 71 72 75 74 3 76
|
hlln |
|
| 80 |
79
|
adantr |
|
| 81 |
14
|
ad2antrr |
|
| 82 |
16
|
ad2antrr |
|
| 83 |
75
|
adantr |
|
| 84 |
25
|
ad2antrr |
|
| 85 |
76
|
adantr |
|
| 86 |
1 2 11 84 82 83 81 85
|
hlne2 |
|
| 87 |
15
|
ad2antrr |
|
| 88 |
|
simpr |
|
| 89 |
9
|
ad3antrrr |
|
| 90 |
1 2 3 81 82 83 86 86 87 88 89
|
tglinethru |
|
| 91 |
80 90
|
eleqtrrd |
|
| 92 |
39
|
ad2antrr |
|
| 93 |
91 92
|
pm2.65da |
|
| 94 |
48
|
adantr |
|
| 95 |
78 93 94
|
3jca |
|
| 96 |
70 95
|
impbida |
|
| 97 |
38 56 96
|
3bitr3d |
|
| 98 |
97
|
pm5.32da |
|
| 99 |
|
simprr |
|
| 100 |
4
|
adantr |
|
| 101 |
5
|
adantr |
|
| 102 |
6
|
adantr |
|
| 103 |
8
|
adantr |
|
| 104 |
|
simpr |
|
| 105 |
1 2 3 7 100 101 102 103 104
|
hpgne1 |
|
| 106 |
105 104
|
jca |
|
| 107 |
99 106
|
impbida |
|
| 108 |
13 98 107
|
3bitr2rd |
|