Metamath Proof Explorer


Theorem cosordlem

Description: Lemma for cosord . (Contributed by Mario Carneiro, 10-May-2014)

Ref Expression
Hypotheses cosord.1 φA0π
cosord.2 φB0π
cosord.3 φA<B
Assertion cosordlem φcosB<cosA

Proof

Step Hyp Ref Expression
1 cosord.1 φA0π
2 cosord.2 φB0π
3 cosord.3 φA<B
4 0re 0
5 pire π
6 4 5 elicc2i B0πB0BBπ
7 2 6 sylib φB0BBπ
8 7 simp1d φB
9 8 recnd φB
10 4 5 elicc2i A0πA0AAπ
11 1 10 sylib φA0AAπ
12 11 simp1d φA
13 12 recnd φA
14 subcos BAcosAcosB=2sinB+A2sinBA2
15 9 13 14 syl2anc φcosAcosB=2sinB+A2sinBA2
16 2rp 2+
17 8 12 readdcld φB+A
18 17 rehalfcld φB+A2
19 18 resincld φsinB+A2
20 4 a1i φ0
21 11 simp2d φ0A
22 20 12 8 21 3 lelttrd φ0<B
23 8 12 22 21 addgtge0d φ0<B+A
24 2re 2
25 2pos 0<2
26 divgt0 B+A0<B+A20<20<B+A2
27 24 25 26 mpanr12 B+A0<B+A0<B+A2
28 17 23 27 syl2anc φ0<B+A2
29 5 a1i φπ
30 12 8 8 3 ltadd2dd φB+A<B+B
31 9 2timesd φ2B=B+B
32 30 31 breqtrrd φB+A<2B
33 24 a1i φ2
34 25 a1i φ0<2
35 ltdivmul B+AB20<2B+A2<BB+A<2B
36 17 8 33 34 35 syl112anc φB+A2<BB+A<2B
37 32 36 mpbird φB+A2<B
38 7 simp3d φBπ
39 18 8 29 37 38 ltletrd φB+A2<π
40 0xr 0*
41 5 rexri π*
42 elioo2 0*π*B+A20πB+A20<B+A2B+A2<π
43 40 41 42 mp2an B+A20πB+A20<B+A2B+A2<π
44 18 28 39 43 syl3anbrc φB+A20π
45 sinq12gt0 B+A20π0<sinB+A2
46 44 45 syl φ0<sinB+A2
47 19 46 elrpd φsinB+A2+
48 8 12 resubcld φBA
49 48 rehalfcld φBA2
50 49 resincld φsinBA2
51 12 8 posdifd φA<B0<BA
52 3 51 mpbid φ0<BA
53 divgt0 BA0<BA20<20<BA2
54 24 25 53 mpanr12 BA0<BA0<BA2
55 48 52 54 syl2anc φ0<BA2
56 rehalfcl ππ2
57 5 56 mp1i φπ2
58 8 12 subge02d φ0ABAB
59 21 58 mpbid φBAB
60 48 8 29 59 38 letrd φBAπ
61 lediv1 BAπ20<2BAπBA2π2
62 48 29 33 34 61 syl112anc φBAπBA2π2
63 60 62 mpbid φBA2π2
64 pirp π+
65 rphalflt π+π2<π
66 64 65 mp1i φπ2<π
67 49 57 29 63 66 lelttrd φBA2<π
68 elioo2 0*π*BA20πBA20<BA2BA2<π
69 40 41 68 mp2an BA20πBA20<BA2BA2<π
70 49 55 67 69 syl3anbrc φBA20π
71 sinq12gt0 BA20π0<sinBA2
72 70 71 syl φ0<sinBA2
73 50 72 elrpd φsinBA2+
74 47 73 rpmulcld φsinB+A2sinBA2+
75 rpmulcl 2+sinB+A2sinBA2+2sinB+A2sinBA2+
76 16 74 75 sylancr φ2sinB+A2sinBA2+
77 15 76 eqeltrd φcosAcosB+
78 8 recoscld φcosB
79 12 recoscld φcosA
80 difrp cosBcosAcosB<cosAcosAcosB+
81 78 79 80 syl2anc φcosB<cosAcosAcosB+
82 77 81 mpbird φcosB<cosA