Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Properties of pi = 3.14159...
cosordlem
Next ⟩
cosord
Metamath Proof Explorer
Ascii
Unicode
Theorem
cosordlem
Description:
Lemma for
cosord
.
(Contributed by
Mario Carneiro
, 10-May-2014)
Ref
Expression
Hypotheses
cosord.1
π
⊢
φ
→
A
∈
0
π
cosord.2
π
⊢
φ
→
B
∈
0
π
cosord.3
⊢
φ
→
A
<
B
Assertion
cosordlem
⊢
φ
→
cos
B
<
cos
A
Proof
Step
Hyp
Ref
Expression
1
cosord.1
π
⊢
φ
→
A
∈
0
π
2
cosord.2
π
⊢
φ
→
B
∈
0
π
3
cosord.3
⊢
φ
→
A
<
B
4
0re
⊢
0
∈
ℝ
5
pire
π
⊢
π
∈
ℝ
6
4
5
elicc2i
π
π
⊢
B
∈
0
π
↔
B
∈
ℝ
∧
0
≤
B
∧
B
≤
π
7
2
6
sylib
π
⊢
φ
→
B
∈
ℝ
∧
0
≤
B
∧
B
≤
π
8
7
simp1d
⊢
φ
→
B
∈
ℝ
9
8
recnd
⊢
φ
→
B
∈
ℂ
10
4
5
elicc2i
π
π
⊢
A
∈
0
π
↔
A
∈
ℝ
∧
0
≤
A
∧
A
≤
π
11
1
10
sylib
π
⊢
φ
→
A
∈
ℝ
∧
0
≤
A
∧
A
≤
π
12
11
simp1d
⊢
φ
→
A
∈
ℝ
13
12
recnd
⊢
φ
→
A
∈
ℂ
14
subcos
⊢
B
∈
ℂ
∧
A
∈
ℂ
→
cos
A
−
cos
B
=
2
sin
B
+
A
2
sin
B
−
A
2
15
9
13
14
syl2anc
⊢
φ
→
cos
A
−
cos
B
=
2
sin
B
+
A
2
sin
B
−
A
2
16
2rp
⊢
2
∈
ℝ
+
17
8
12
readdcld
⊢
φ
→
B
+
A
∈
ℝ
18
17
rehalfcld
⊢
φ
→
B
+
A
2
∈
ℝ
19
18
resincld
⊢
φ
→
sin
B
+
A
2
∈
ℝ
20
4
a1i
⊢
φ
→
0
∈
ℝ
21
11
simp2d
⊢
φ
→
0
≤
A
22
20
12
8
21
3
lelttrd
⊢
φ
→
0
<
B
23
8
12
22
21
addgtge0d
⊢
φ
→
0
<
B
+
A
24
2re
⊢
2
∈
ℝ
25
2pos
⊢
0
<
2
26
divgt0
⊢
B
+
A
∈
ℝ
∧
0
<
B
+
A
∧
2
∈
ℝ
∧
0
<
2
→
0
<
B
+
A
2
27
24
25
26
mpanr12
⊢
B
+
A
∈
ℝ
∧
0
<
B
+
A
→
0
<
B
+
A
2
28
17
23
27
syl2anc
⊢
φ
→
0
<
B
+
A
2
29
5
a1i
π
⊢
φ
→
π
∈
ℝ
30
12
8
8
3
ltadd2dd
⊢
φ
→
B
+
A
<
B
+
B
31
9
2timesd
⊢
φ
→
2
B
=
B
+
B
32
30
31
breqtrrd
⊢
φ
→
B
+
A
<
2
B
33
24
a1i
⊢
φ
→
2
∈
ℝ
34
25
a1i
⊢
φ
→
0
<
2
35
ltdivmul
⊢
B
+
A
∈
ℝ
∧
B
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
B
+
A
2
<
B
↔
B
+
A
<
2
B
36
17
8
33
34
35
syl112anc
⊢
φ
→
B
+
A
2
<
B
↔
B
+
A
<
2
B
37
32
36
mpbird
⊢
φ
→
B
+
A
2
<
B
38
7
simp3d
π
⊢
φ
→
B
≤
π
39
18
8
29
37
38
ltletrd
π
⊢
φ
→
B
+
A
2
<
π
40
0xr
⊢
0
∈
ℝ
*
41
5
rexri
π
⊢
π
∈
ℝ
*
42
elioo2
π
π
π
⊢
0
∈
ℝ
*
∧
π
∈
ℝ
*
→
B
+
A
2
∈
0
π
↔
B
+
A
2
∈
ℝ
∧
0
<
B
+
A
2
∧
B
+
A
2
<
π
43
40
41
42
mp2an
π
π
⊢
B
+
A
2
∈
0
π
↔
B
+
A
2
∈
ℝ
∧
0
<
B
+
A
2
∧
B
+
A
2
<
π
44
18
28
39
43
syl3anbrc
π
⊢
φ
→
B
+
A
2
∈
0
π
45
sinq12gt0
π
⊢
B
+
A
2
∈
0
π
→
0
<
sin
B
+
A
2
46
44
45
syl
⊢
φ
→
0
<
sin
B
+
A
2
47
19
46
elrpd
⊢
φ
→
sin
B
+
A
2
∈
ℝ
+
48
8
12
resubcld
⊢
φ
→
B
−
A
∈
ℝ
49
48
rehalfcld
⊢
φ
→
B
−
A
2
∈
ℝ
50
49
resincld
⊢
φ
→
sin
B
−
A
2
∈
ℝ
51
12
8
posdifd
⊢
φ
→
A
<
B
↔
0
<
B
−
A
52
3
51
mpbid
⊢
φ
→
0
<
B
−
A
53
divgt0
⊢
B
−
A
∈
ℝ
∧
0
<
B
−
A
∧
2
∈
ℝ
∧
0
<
2
→
0
<
B
−
A
2
54
24
25
53
mpanr12
⊢
B
−
A
∈
ℝ
∧
0
<
B
−
A
→
0
<
B
−
A
2
55
48
52
54
syl2anc
⊢
φ
→
0
<
B
−
A
2
56
rehalfcl
π
π
⊢
π
∈
ℝ
→
π
2
∈
ℝ
57
5
56
mp1i
π
⊢
φ
→
π
2
∈
ℝ
58
8
12
subge02d
⊢
φ
→
0
≤
A
↔
B
−
A
≤
B
59
21
58
mpbid
⊢
φ
→
B
−
A
≤
B
60
48
8
29
59
38
letrd
π
⊢
φ
→
B
−
A
≤
π
61
lediv1
π
π
π
⊢
B
−
A
∈
ℝ
∧
π
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
B
−
A
≤
π
↔
B
−
A
2
≤
π
2
62
48
29
33
34
61
syl112anc
π
π
⊢
φ
→
B
−
A
≤
π
↔
B
−
A
2
≤
π
2
63
60
62
mpbid
π
⊢
φ
→
B
−
A
2
≤
π
2
64
pirp
π
⊢
π
∈
ℝ
+
65
rphalflt
π
π
π
⊢
π
∈
ℝ
+
→
π
2
<
π
66
64
65
mp1i
π
π
⊢
φ
→
π
2
<
π
67
49
57
29
63
66
lelttrd
π
⊢
φ
→
B
−
A
2
<
π
68
elioo2
π
π
π
⊢
0
∈
ℝ
*
∧
π
∈
ℝ
*
→
B
−
A
2
∈
0
π
↔
B
−
A
2
∈
ℝ
∧
0
<
B
−
A
2
∧
B
−
A
2
<
π
69
40
41
68
mp2an
π
π
⊢
B
−
A
2
∈
0
π
↔
B
−
A
2
∈
ℝ
∧
0
<
B
−
A
2
∧
B
−
A
2
<
π
70
49
55
67
69
syl3anbrc
π
⊢
φ
→
B
−
A
2
∈
0
π
71
sinq12gt0
π
⊢
B
−
A
2
∈
0
π
→
0
<
sin
B
−
A
2
72
70
71
syl
⊢
φ
→
0
<
sin
B
−
A
2
73
50
72
elrpd
⊢
φ
→
sin
B
−
A
2
∈
ℝ
+
74
47
73
rpmulcld
⊢
φ
→
sin
B
+
A
2
sin
B
−
A
2
∈
ℝ
+
75
rpmulcl
⊢
2
∈
ℝ
+
∧
sin
B
+
A
2
sin
B
−
A
2
∈
ℝ
+
→
2
sin
B
+
A
2
sin
B
−
A
2
∈
ℝ
+
76
16
74
75
sylancr
⊢
φ
→
2
sin
B
+
A
2
sin
B
−
A
2
∈
ℝ
+
77
15
76
eqeltrd
⊢
φ
→
cos
A
−
cos
B
∈
ℝ
+
78
8
recoscld
⊢
φ
→
cos
B
∈
ℝ
79
12
recoscld
⊢
φ
→
cos
A
∈
ℝ
80
difrp
⊢
cos
B
∈
ℝ
∧
cos
A
∈
ℝ
→
cos
B
<
cos
A
↔
cos
A
−
cos
B
∈
ℝ
+
81
78
79
80
syl2anc
⊢
φ
→
cos
B
<
cos
A
↔
cos
A
−
cos
B
∈
ℝ
+
82
77
81
mpbird
⊢
φ
→
cos
B
<
cos
A