Metamath Proof Explorer


Theorem cssbn

Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp , a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition CH ( df-ch ) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn . (Contributed by NM, 10-Apr-2008) (Revised by AV, 6-Oct-2022)

Ref Expression
Hypotheses cssbn.x X=W𝑠U
cssbn.s S=LSubSpW
cssbn.d D=distWU×U
Assertion cssbn WNrmVecScalarWCMetSpUSCauDdomtMetOpenDXBan

Proof

Step Hyp Ref Expression
1 cssbn.x X=W𝑠U
2 cssbn.s S=LSubSpW
3 cssbn.d D=distWU×U
4 simpl1 WNrmVecScalarWCMetSpUSCauDdomtMetOpenDWNrmVec
5 simpl2 WNrmVecScalarWCMetSpUSCauDdomtMetOpenDScalarWCMetSp
6 nvcnlm WNrmVecWNrmMod
7 nlmngp WNrmModWNrmGrp
8 6 7 syl WNrmVecWNrmGrp
9 nvclmod WNrmVecWLMod
10 2 lsssubg WLModUSUSubGrpW
11 9 10 sylan WNrmVecUSUSubGrpW
12 1 subgngp WNrmGrpUSubGrpWXNrmGrp
13 8 11 12 syl2an2r WNrmVecUSXNrmGrp
14 13 3adant2 WNrmVecScalarWCMetSpUSXNrmGrp
15 14 adantr WNrmVecScalarWCMetSpUSCauDdomtMetOpenDXNrmGrp
16 ngpms XNrmGrpXMetSp
17 15 16 syl WNrmVecScalarWCMetSpUSCauDdomtMetOpenDXMetSp
18 eqid distW=distW
19 1 18 ressds USdistW=distX
20 19 3ad2ant3 WNrmVecScalarWCMetSpUSdistW=distX
21 11 3adant2 WNrmVecScalarWCMetSpUSUSubGrpW
22 1 subgbas USubGrpWU=BaseX
23 21 22 syl WNrmVecScalarWCMetSpUSU=BaseX
24 23 sqxpeqd WNrmVecScalarWCMetSpUSU×U=BaseX×BaseX
25 20 24 reseq12d WNrmVecScalarWCMetSpUSdistWU×U=distXBaseX×BaseX
26 3 25 eqtrid WNrmVecScalarWCMetSpUSD=distXBaseX×BaseX
27 26 eqcomd WNrmVecScalarWCMetSpUSdistXBaseX×BaseX=D
28 27 adantr WNrmVecScalarWCMetSpUSCauDdomtMetOpenDdistXBaseX×BaseX=D
29 eqid BaseX=BaseX
30 eqid distXBaseX×BaseX=distXBaseX×BaseX
31 29 30 ngpmet XNrmGrpdistXBaseX×BaseXMetBaseX
32 14 31 syl WNrmVecScalarWCMetSpUSdistXBaseX×BaseXMetBaseX
33 26 32 eqeltrd WNrmVecScalarWCMetSpUSDMetBaseX
34 33 adantr WNrmVecScalarWCMetSpUSCauDdomtMetOpenDDMetBaseX
35 simpr WNrmVecScalarWCMetSpUSCauDdomtMetOpenDCauDdomtMetOpenD
36 eqid MetOpenD=MetOpenD
37 36 iscmet2 DCMetBaseXDMetBaseXCauDdomtMetOpenD
38 34 35 37 sylanbrc WNrmVecScalarWCMetSpUSCauDdomtMetOpenDDCMetBaseX
39 28 38 eqeltrd WNrmVecScalarWCMetSpUSCauDdomtMetOpenDdistXBaseX×BaseXCMetBaseX
40 29 30 iscms XCMetSpXMetSpdistXBaseX×BaseXCMetBaseX
41 17 39 40 sylanbrc WNrmVecScalarWCMetSpUSCauDdomtMetOpenDXCMetSp
42 simpl3 WNrmVecScalarWCMetSpUSCauDdomtMetOpenDUS
43 1 2 cmslssbn WNrmVecScalarWCMetSpXCMetSpUSXBan
44 4 5 41 42 43 syl22anc WNrmVecScalarWCMetSpUSCauDdomtMetOpenDXBan