Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp , a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition CH ( df-ch ) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn . (Contributed by NM, 10-Apr-2008) (Revised by AV, 6-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cssbn.x | |
|
cssbn.s | |
||
cssbn.d | |
||
Assertion | cssbn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cssbn.x | |
|
2 | cssbn.s | |
|
3 | cssbn.d | |
|
4 | simpl1 | |
|
5 | simpl2 | |
|
6 | nvcnlm | |
|
7 | nlmngp | |
|
8 | 6 7 | syl | |
9 | nvclmod | |
|
10 | 2 | lsssubg | |
11 | 9 10 | sylan | |
12 | 1 | subgngp | |
13 | 8 11 12 | syl2an2r | |
14 | 13 | 3adant2 | |
15 | 14 | adantr | |
16 | ngpms | |
|
17 | 15 16 | syl | |
18 | eqid | |
|
19 | 1 18 | ressds | |
20 | 19 | 3ad2ant3 | |
21 | 11 | 3adant2 | |
22 | 1 | subgbas | |
23 | 21 22 | syl | |
24 | 23 | sqxpeqd | |
25 | 20 24 | reseq12d | |
26 | 3 25 | eqtrid | |
27 | 26 | eqcomd | |
28 | 27 | adantr | |
29 | eqid | |
|
30 | eqid | |
|
31 | 29 30 | ngpmet | |
32 | 14 31 | syl | |
33 | 26 32 | eqeltrd | |
34 | 33 | adantr | |
35 | simpr | |
|
36 | eqid | |
|
37 | 36 | iscmet2 | |
38 | 34 35 37 | sylanbrc | |
39 | 28 38 | eqeltrd | |
40 | 29 30 | iscms | |
41 | 17 39 40 | sylanbrc | |
42 | simpl3 | |
|
43 | 1 2 | cmslssbn | |
44 | 4 5 41 42 43 | syl22anc | |