Metamath Proof Explorer


Theorem cusgrrusgr

Description: A complete simple graph with n vertices (at least one) is (n-1)-regular. (Contributed by Alexander van der Vekens, 10-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Hypothesis cusgrrusgr.v V=VtxG
Assertion cusgrrusgr GComplUSGraphVFinVGRegUSGraphV1

Proof

Step Hyp Ref Expression
1 cusgrrusgr.v V=VtxG
2 cusgrusgr GComplUSGraphGUSGraph
3 2 3ad2ant1 GComplUSGraphVFinVGUSGraph
4 hashnncl VFinVV
5 nnm1nn0 VV10
6 5 nn0xnn0d VV10*
7 4 6 syl6bir VFinVV10*
8 7 imp VFinVV10*
9 8 3adant1 GComplUSGraphVFinVV10*
10 cusgrcplgr GComplUSGraphGComplGraph
11 10 3ad2ant1 GComplUSGraphVFinVGComplGraph
12 1 nbcplgr GComplGraphvVGNeighbVtxv=Vv
13 11 12 sylan GComplUSGraphVFinVvVGNeighbVtxv=Vv
14 13 ralrimiva GComplUSGraphVFinVvVGNeighbVtxv=Vv
15 3 anim1i GComplUSGraphVFinVvVGUSGraphvV
16 15 adantr GComplUSGraphVFinVvVGNeighbVtxv=VvGUSGraphvV
17 1 hashnbusgrvd GUSGraphvVGNeighbVtxv=VtxDegGv
18 16 17 syl GComplUSGraphVFinVvVGNeighbVtxv=VvGNeighbVtxv=VtxDegGv
19 fveq2 GNeighbVtxv=VvGNeighbVtxv=Vv
20 hashdifsn VFinvVVv=V1
21 20 3ad2antl2 GComplUSGraphVFinVvVVv=V1
22 19 21 sylan9eqr GComplUSGraphVFinVvVGNeighbVtxv=VvGNeighbVtxv=V1
23 18 22 eqtr3d GComplUSGraphVFinVvVGNeighbVtxv=VvVtxDegGv=V1
24 23 ex GComplUSGraphVFinVvVGNeighbVtxv=VvVtxDegGv=V1
25 24 ralimdva GComplUSGraphVFinVvVGNeighbVtxv=VvvVVtxDegGv=V1
26 14 25 mpd GComplUSGraphVFinVvVVtxDegGv=V1
27 simp1 GComplUSGraphVFinVGComplUSGraph
28 ovex V1V
29 eqid VtxDegG=VtxDegG
30 1 29 isrusgr0 GComplUSGraphV1VGRegUSGraphV1GUSGraphV10*vVVtxDegGv=V1
31 27 28 30 sylancl GComplUSGraphVFinVGRegUSGraphV1GUSGraphV10*vVVtxDegGv=V1
32 3 9 26 31 mpbir3and GComplUSGraphVFinVGRegUSGraphV1