Metamath Proof Explorer


Theorem cycpmcl

Description: Cyclic permutations are permutations. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses tocycval.1 C=toCycD
tocycfv.d φDV
tocycfv.w φWWordD
tocycfv.1 φW:domW1-1D
cycpmcl.s S=SymGrpD
Assertion cycpmcl φCWBaseS

Proof

Step Hyp Ref Expression
1 tocycval.1 C=toCycD
2 tocycfv.d φDV
3 tocycfv.w φWWordD
4 tocycfv.1 φW:domW1-1D
5 cycpmcl.s S=SymGrpD
6 f1oi IDranW:DranW1-1 ontoDranW
7 6 a1i φIDranW:DranW1-1 ontoDranW
8 1zzd φ1
9 cshwf WWordD1WcyclShift1:0..^WD
10 3 8 9 syl2anc φWcyclShift1:0..^WD
11 10 ffnd φWcyclShift1Fn0..^W
12 df-f1 W:domW1-1DW:domWDFunW-1
13 4 12 sylib φW:domWDFunW-1
14 13 simprd φFunW-1
15 eqid WcyclShift1=WcyclShift1
16 cshinj WWordDFunW-11WcyclShift1=WcyclShift1FunWcyclShift1-1
17 15 16 mpi WWordDFunW-11FunWcyclShift1-1
18 3 14 8 17 syl3anc φFunWcyclShift1-1
19 f1orn WcyclShift1:0..^W1-1 ontoranWcyclShift1WcyclShift1Fn0..^WFunWcyclShift1-1
20 11 18 19 sylanbrc φWcyclShift1:0..^W1-1 ontoranWcyclShift1
21 eqidd φWcyclShift1=WcyclShift1
22 wrdf WWordDW:0..^WD
23 3 22 syl φW:0..^WD
24 23 fdmd φdomW=0..^W
25 cshwrnid WWordD1ranWcyclShift1=ranW
26 3 8 25 syl2anc φranWcyclShift1=ranW
27 26 eqcomd φranW=ranWcyclShift1
28 21 24 27 f1oeq123d φWcyclShift1:domW1-1 ontoranWWcyclShift1:0..^W1-1 ontoranWcyclShift1
29 20 28 mpbird φWcyclShift1:domW1-1 ontoranW
30 f1f1orn W:domW1-1DW:domW1-1 ontoranW
31 f1ocnv W:domW1-1 ontoranWW-1:ranW1-1 ontodomW
32 4 30 31 3syl φW-1:ranW1-1 ontodomW
33 f1oco WcyclShift1:domW1-1 ontoranWW-1:ranW1-1 ontodomWWcyclShift1W-1:ranW1-1 ontoranW
34 29 32 33 syl2anc φWcyclShift1W-1:ranW1-1 ontoranW
35 disjdifr DranWranW=
36 35 a1i φDranWranW=
37 f1oun IDranW:DranW1-1 ontoDranWWcyclShift1W-1:ranW1-1 ontoranWDranWranW=DranWranW=IDranWWcyclShift1W-1:DranWranW1-1 ontoDranWranW
38 7 34 36 36 37 syl22anc φIDranWWcyclShift1W-1:DranWranW1-1 ontoDranWranW
39 1 2 3 4 tocycfv φCW=IDranWWcyclShift1W-1
40 23 frnd φranWD
41 undif ranWDranWDranW=D
42 40 41 sylib φranWDranW=D
43 uncom ranWDranW=DranWranW
44 42 43 eqtr3di φD=DranWranW
45 39 44 44 f1oeq123d φCW:D1-1 ontoDIDranWWcyclShift1W-1:DranWranW1-1 ontoDranWranW
46 38 45 mpbird φCW:D1-1 ontoD
47 fvex CWV
48 eqid BaseS=BaseS
49 5 48 elsymgbas2 CWVCWBaseSCW:D1-1 ontoD
50 47 49 ax-mp CWBaseSCW:D1-1 ontoD
51 46 50 sylibr φCWBaseS