Description: Cyclic permutations are permutations. (Contributed by Thierry Arnoux, 24-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tocycval.1 | |
|
tocycfv.d | |
||
tocycfv.w | |
||
tocycfv.1 | |
||
cycpmcl.s | |
||
Assertion | cycpmcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycval.1 | |
|
2 | tocycfv.d | |
|
3 | tocycfv.w | |
|
4 | tocycfv.1 | |
|
5 | cycpmcl.s | |
|
6 | f1oi | |
|
7 | 6 | a1i | |
8 | 1zzd | |
|
9 | cshwf | |
|
10 | 3 8 9 | syl2anc | |
11 | 10 | ffnd | |
12 | df-f1 | |
|
13 | 4 12 | sylib | |
14 | 13 | simprd | |
15 | eqid | |
|
16 | cshinj | |
|
17 | 15 16 | mpi | |
18 | 3 14 8 17 | syl3anc | |
19 | f1orn | |
|
20 | 11 18 19 | sylanbrc | |
21 | eqidd | |
|
22 | wrdf | |
|
23 | 3 22 | syl | |
24 | 23 | fdmd | |
25 | cshwrnid | |
|
26 | 3 8 25 | syl2anc | |
27 | 26 | eqcomd | |
28 | 21 24 27 | f1oeq123d | |
29 | 20 28 | mpbird | |
30 | f1f1orn | |
|
31 | f1ocnv | |
|
32 | 4 30 31 | 3syl | |
33 | f1oco | |
|
34 | 29 32 33 | syl2anc | |
35 | disjdifr | |
|
36 | 35 | a1i | |
37 | f1oun | |
|
38 | 7 34 36 36 37 | syl22anc | |
39 | 1 2 3 4 | tocycfv | |
40 | 23 | frnd | |
41 | undif | |
|
42 | 40 41 | sylib | |
43 | uncom | |
|
44 | 42 43 | eqtr3di | |
45 | 39 44 44 | f1oeq123d | |
46 | 38 45 | mpbird | |
47 | fvex | |
|
48 | eqid | |
|
49 | 5 48 | elsymgbas2 | |
50 | 47 49 | ax-mp | |
51 | 46 50 | sylibr | |