| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmconjs.c |
|
| 2 |
|
cycpmconjs.s |
|
| 3 |
|
cycpmconjs.n |
|
| 4 |
|
cycpmconjs.m |
|
| 5 |
|
cycpmconjs.b |
|
| 6 |
|
cycpmconjs.a |
|
| 7 |
|
cycpmconjs.l |
|
| 8 |
|
cycpmconjs.p |
|
| 9 |
|
cycpmconjs.d |
|
| 10 |
|
cycpmconjs.q |
|
| 11 |
|
cycpmconjs.t |
|
| 12 |
1 2 3 4 5 6 7 8 9 10
|
cycpmconjslem2 |
|
| 13 |
1 2 3 4 5 6 7 8 9 11
|
cycpmconjslem2 |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
9
|
ad4antr |
|
| 16 |
|
simp-4r |
|
| 17 |
|
f1ocnv |
|
| 18 |
17
|
ad2antlr |
|
| 19 |
|
f1oco |
|
| 20 |
16 18 19
|
syl2anc |
|
| 21 |
2 5
|
elsymgbas |
|
| 22 |
21
|
biimpar |
|
| 23 |
15 20 22
|
syl2anc |
|
| 24 |
|
simpr |
|
| 25 |
24
|
oveq1d |
|
| 26 |
25 24
|
oveq12d |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
|
simpllr |
|
| 29 |
|
simpr |
|
| 30 |
28 29
|
eqtr4d |
|
| 31 |
30
|
coeq1d |
|
| 32 |
31
|
coeq2d |
|
| 33 |
|
coass |
|
| 34 |
|
coass |
|
| 35 |
34
|
coeq1i |
|
| 36 |
|
coass |
|
| 37 |
36
|
coeq2i |
|
| 38 |
33 35 37
|
3eqtr4ri |
|
| 39 |
|
f1ococnv2 |
|
| 40 |
16 39
|
syl |
|
| 41 |
40
|
coeq1d |
|
| 42 |
1 2 3 4 5
|
cycpmgcl |
|
| 43 |
9 8 42
|
syl2anc |
|
| 44 |
43 10
|
sseldd |
|
| 45 |
2 5
|
elsymgbas |
|
| 46 |
45
|
biimpa |
|
| 47 |
9 44 46
|
syl2anc |
|
| 48 |
|
f1of |
|
| 49 |
|
fcoi2 |
|
| 50 |
47 48 49
|
3syl |
|
| 51 |
50
|
ad4antr |
|
| 52 |
41 51
|
eqtrd |
|
| 53 |
52 40
|
coeq12d |
|
| 54 |
|
fcoi1 |
|
| 55 |
47 48 54
|
3syl |
|
| 56 |
55
|
ad4antr |
|
| 57 |
53 56
|
eqtrd |
|
| 58 |
38 57
|
eqtrid |
|
| 59 |
|
coass |
|
| 60 |
|
coass |
|
| 61 |
60
|
coeq1i |
|
| 62 |
|
coass |
|
| 63 |
62
|
coeq2i |
|
| 64 |
59 61 63
|
3eqtr4i |
|
| 65 |
43 11
|
sseldd |
|
| 66 |
65
|
ad4antr |
|
| 67 |
2 5 6
|
symgov |
|
| 68 |
23 66 67
|
syl2anc |
|
| 69 |
68
|
oveq1d |
|
| 70 |
2
|
symggrp |
|
| 71 |
9 70
|
syl |
|
| 72 |
71
|
ad4antr |
|
| 73 |
5 6
|
grpcl |
|
| 74 |
72 23 66 73
|
syl3anc |
|
| 75 |
68 74
|
eqeltrrd |
|
| 76 |
2 5 7
|
symgsubg |
|
| 77 |
75 23 76
|
syl2anc |
|
| 78 |
|
cnvco |
|
| 79 |
|
f1orel |
|
| 80 |
|
dfrel2 |
|
| 81 |
79 80
|
sylib |
|
| 82 |
81
|
coeq1d |
|
| 83 |
78 82
|
eqtrid |
|
| 84 |
83
|
coeq2d |
|
| 85 |
84
|
ad2antlr |
|
| 86 |
69 77 85
|
3eqtrrd |
|
| 87 |
64 86
|
eqtr3id |
|
| 88 |
32 58 87
|
3eqtr3d |
|
| 89 |
23 27 88
|
rspcedvd |
|
| 90 |
89
|
anasss |
|
| 91 |
14 90
|
exlimddv |
|
| 92 |
91
|
anasss |
|
| 93 |
12 92
|
exlimddv |
|