Metamath Proof Explorer


Theorem cycpmconjs

Description: All cycles of the same length are conjugate in the symmetric group. (Contributed by Thierry Arnoux, 14-Oct-2023)

Ref Expression
Hypotheses cycpmconjs.c C=M.-1P
cycpmconjs.s S=SymGrpD
cycpmconjs.n N=D
cycpmconjs.m M=toCycD
cycpmconjs.b B=BaseS
cycpmconjs.a +˙=+S
cycpmconjs.l -˙=-S
cycpmconjs.p φP0N
cycpmconjs.d φDFin
cycpmconjs.q φQC
cycpmconjs.t φTC
Assertion cycpmconjs φpBQ=p+˙T-˙p

Proof

Step Hyp Ref Expression
1 cycpmconjs.c C=M.-1P
2 cycpmconjs.s S=SymGrpD
3 cycpmconjs.n N=D
4 cycpmconjs.m M=toCycD
5 cycpmconjs.b B=BaseS
6 cycpmconjs.a +˙=+S
7 cycpmconjs.l -˙=-S
8 cycpmconjs.p φP0N
9 cycpmconjs.d φDFin
10 cycpmconjs.q φQC
11 cycpmconjs.t φTC
12 1 2 3 4 5 6 7 8 9 10 cycpmconjslem2 φqq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^N
13 1 2 3 4 5 6 7 8 9 11 cycpmconjslem2 φtt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^N
14 13 ad2antrr φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Ntt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^N
15 9 ad4antr φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^NDFin
16 simp-4r φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nq:0..^N1-1 ontoD
17 f1ocnv t:0..^N1-1 ontoDt-1:D1-1 onto0..^N
18 17 ad2antlr φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nt-1:D1-1 onto0..^N
19 f1oco q:0..^N1-1 ontoDt-1:D1-1 onto0..^Nqt-1:D1-1 ontoD
20 16 18 19 syl2anc φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqt-1:D1-1 ontoD
21 2 5 elsymgbas DFinqt-1Bqt-1:D1-1 ontoD
22 21 biimpar DFinqt-1:D1-1 ontoDqt-1B
23 15 20 22 syl2anc φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqt-1B
24 simpr φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Np=qt-1p=qt-1
25 24 oveq1d φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Np=qt-1p+˙T=qt-1+˙T
26 25 24 oveq12d φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Np=qt-1p+˙T-˙p=qt-1+˙T-˙qt-1
27 26 eqeq2d φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Np=qt-1Q=p+˙T-˙pQ=qt-1+˙T-˙qt-1
28 simpllr φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nq-1Qq=I0..^PcyclShift1IP..^N
29 simpr φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nt-1Tt=I0..^PcyclShift1IP..^N
30 28 29 eqtr4d φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nq-1Qq=t-1Tt
31 30 coeq1d φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nq-1Qqq-1=t-1Ttq-1
32 31 coeq2d φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqq-1Qqq-1=qt-1Ttq-1
33 coass qq-1Qqq-1=qq-1Qqq-1
34 coass qq-1Q=qq-1Q
35 34 coeq1i qq-1Qqq-1=qq-1Qqq-1
36 coass q-1Qqq-1=q-1Qqq-1
37 36 coeq2i qq-1Qqq-1=qq-1Qqq-1
38 33 35 37 3eqtr4ri qq-1Qqq-1=qq-1Qqq-1
39 f1ococnv2 q:0..^N1-1 ontoDqq-1=ID
40 16 39 syl φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqq-1=ID
41 40 coeq1d φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqq-1Q=IDQ
42 1 2 3 4 5 cycpmgcl DFinP0NCB
43 9 8 42 syl2anc φCB
44 43 10 sseldd φQB
45 2 5 elsymgbas DFinQBQ:D1-1 ontoD
46 45 biimpa DFinQBQ:D1-1 ontoD
47 9 44 46 syl2anc φQ:D1-1 ontoD
48 f1of Q:D1-1 ontoDQ:DD
49 fcoi2 Q:DDIDQ=Q
50 47 48 49 3syl φIDQ=Q
51 50 ad4antr φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^NIDQ=Q
52 41 51 eqtrd φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqq-1Q=Q
53 52 40 coeq12d φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqq-1Qqq-1=QID
54 fcoi1 Q:DDQID=Q
55 47 48 54 3syl φQID=Q
56 55 ad4antr φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^NQID=Q
57 53 56 eqtrd φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqq-1Qqq-1=Q
58 38 57 eqtrid φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqq-1Qqq-1=Q
59 coass qt-1Ttq-1=qt-1Ttq-1
60 coass qt-1T=qt-1T
61 60 coeq1i qt-1Ttq-1=qt-1Ttq-1
62 coass t-1Ttq-1=t-1Ttq-1
63 62 coeq2i qt-1Ttq-1=qt-1Ttq-1
64 59 61 63 3eqtr4i qt-1Ttq-1=qt-1Ttq-1
65 43 11 sseldd φTB
66 65 ad4antr φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^NTB
67 2 5 6 symgov qt-1BTBqt-1+˙T=qt-1T
68 23 66 67 syl2anc φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqt-1+˙T=qt-1T
69 68 oveq1d φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqt-1+˙T-˙qt-1=qt-1T-˙qt-1
70 2 symggrp DFinSGrp
71 9 70 syl φSGrp
72 71 ad4antr φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^NSGrp
73 5 6 grpcl SGrpqt-1BTBqt-1+˙TB
74 72 23 66 73 syl3anc φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqt-1+˙TB
75 68 74 eqeltrrd φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqt-1TB
76 2 5 7 symgsubg qt-1TBqt-1Bqt-1T-˙qt-1=qt-1Tqt-1-1
77 75 23 76 syl2anc φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqt-1T-˙qt-1=qt-1Tqt-1-1
78 cnvco qt-1-1=t-1-1q-1
79 f1orel t:0..^N1-1 ontoDRelt
80 dfrel2 Reltt-1-1=t
81 79 80 sylib t:0..^N1-1 ontoDt-1-1=t
82 81 coeq1d t:0..^N1-1 ontoDt-1-1q-1=tq-1
83 78 82 eqtrid t:0..^N1-1 ontoDqt-1-1=tq-1
84 83 coeq2d t:0..^N1-1 ontoDqt-1Tqt-1-1=qt-1Ttq-1
85 84 ad2antlr φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqt-1Tqt-1-1=qt-1Ttq-1
86 69 77 85 3eqtrrd φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqt-1Ttq-1=qt-1+˙T-˙qt-1
87 64 86 eqtr3id φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^Nqt-1Ttq-1=qt-1+˙T-˙qt-1
88 32 58 87 3eqtr3d φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^NQ=qt-1+˙T-˙qt-1
89 23 27 88 rspcedvd φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^NpBQ=p+˙T-˙p
90 89 anasss φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nt:0..^N1-1 ontoDt-1Tt=I0..^PcyclShift1IP..^NpBQ=p+˙T-˙p
91 14 90 exlimddv φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^NpBQ=p+˙T-˙p
92 91 anasss φq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^NpBQ=p+˙T-˙p
93 12 92 exlimddv φpBQ=p+˙T-˙p