Metamath Proof Explorer


Theorem cyc3conja

Description: All 3-cycles are conjugate in the alternating group A_n for n>= 5. Property (b) of Lang p. 32. (Contributed by Thierry Arnoux, 15-Oct-2023)

Ref Expression
Hypotheses cyc3conja.c C = M . -1 3
cyc3conja.a A = pmEven D
cyc3conja.s S = SymGrp D
cyc3conja.n N = D
cyc3conja.m M = toCyc D
cyc3conja.p + ˙ = + S
cyc3conja.l - ˙ = - S
cyc3conja.1 φ 5 N
cyc3conja.d φ D Fin
cyc3conja.q φ Q C
cyc3conja.t φ T C
Assertion cyc3conja φ p A Q = p + ˙ T - ˙ p

Proof

Step Hyp Ref Expression
1 cyc3conja.c C = M . -1 3
2 cyc3conja.a A = pmEven D
3 cyc3conja.s S = SymGrp D
4 cyc3conja.n N = D
5 cyc3conja.m M = toCyc D
6 cyc3conja.p + ˙ = + S
7 cyc3conja.l - ˙ = - S
8 cyc3conja.1 φ 5 N
9 cyc3conja.d φ D Fin
10 cyc3conja.q φ Q C
11 cyc3conja.t φ T C
12 simpr φ g Base S Q = g + ˙ T - ˙ g g A g A
13 simpr φ g Base S Q = g + ˙ T - ˙ g g A p = g p = g
14 13 oveq1d φ g Base S Q = g + ˙ T - ˙ g g A p = g p + ˙ T = g + ˙ T
15 14 13 oveq12d φ g Base S Q = g + ˙ T - ˙ g g A p = g p + ˙ T - ˙ p = g + ˙ T - ˙ g
16 15 eqeq2d φ g Base S Q = g + ˙ T - ˙ g g A p = g Q = p + ˙ T - ˙ p Q = g + ˙ T - ˙ g
17 simplr φ g Base S Q = g + ˙ T - ˙ g g A Q = g + ˙ T - ˙ g
18 12 16 17 rspcedvd φ g Base S Q = g + ˙ T - ˙ g g A p A Q = p + ˙ T - ˙ p
19 9 ad5antr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T D Fin
20 19 ad3antrrr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y D Fin
21 simp-8r φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g Base S
22 simp-6r φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y ¬ g A
23 21 22 eldifd φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g Base S A
24 simpllr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y x D ran u
25 24 eldifad φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y x D
26 simplr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y y D ran u
27 26 eldifad φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y y D
28 25 27 prssd φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y x y D
29 simpr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y x y
30 pr2nelem x D ran u y D ran u x y x y 2 𝑜
31 24 26 29 30 syl3anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y x y 2 𝑜
32 eqid pmTrsp D = pmTrsp D
33 eqid ran pmTrsp D = ran pmTrsp D
34 32 33 pmtrrn D Fin x y D x y 2 𝑜 pmTrsp D x y ran pmTrsp D
35 20 28 31 34 syl3anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y pmTrsp D x y ran pmTrsp D
36 eqid Base S = Base S
37 3 36 33 pmtrodpm D Fin pmTrsp D x y ran pmTrsp D pmTrsp D x y Base S pmEven D
38 20 35 37 syl2anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y pmTrsp D x y Base S pmEven D
39 2 difeq2i Base S A = Base S pmEven D
40 38 39 eleqtrrdi φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y pmTrsp D x y Base S A
41 3 36 2 odpmco D Fin g Base S A pmTrsp D x y Base S A g pmTrsp D x y A
42 20 23 40 41 syl3anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g pmTrsp D x y A
43 simpr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y p = g pmTrsp D x y p = g pmTrsp D x y
44 43 oveq1d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y p = g pmTrsp D x y p + ˙ T = g pmTrsp D x y + ˙ T
45 44 43 oveq12d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y p = g pmTrsp D x y p + ˙ T - ˙ p = g pmTrsp D x y + ˙ T - ˙ g pmTrsp D x y
46 45 eqeq2d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y p = g pmTrsp D x y Q = p + ˙ T - ˙ p Q = g pmTrsp D x y + ˙ T - ˙ g pmTrsp D x y
47 38 eldifad φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y pmTrsp D x y Base S
48 0zd φ 0
49 hashcl D Fin D 0
50 9 49 syl φ D 0
51 4 50 eqeltrid φ N 0
52 51 nn0zd φ N
53 3z 3
54 53 a1i φ 3
55 0red φ 0
56 54 zred φ 3
57 3pos 0 < 3
58 57 a1i φ 0 < 3
59 55 56 58 ltled φ 0 3
60 5re 5
61 60 a1i φ 5
62 51 nn0red φ N
63 3lt5 3 < 5
64 63 a1i φ 3 < 5
65 56 61 64 ltled φ 3 5
66 56 61 62 65 8 letrd φ 3 N
67 48 52 54 59 66 elfzd φ 3 0 N
68 1 3 4 5 36 cycpmgcl D Fin 3 0 N C Base S
69 9 67 68 syl2anc φ C Base S
70 69 11 sseldd φ T Base S
71 70 ad8antr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y T Base S
72 5 20 25 27 29 32 cycpm2tr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y M ⟨“ xy ”⟩ = pmTrsp D x y
73 72 reseq1d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y M ⟨“ xy ”⟩ ran u = pmTrsp D x y ran u
74 25 27 s2cld φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y ⟨“ xy ”⟩ Word D
75 25 27 29 s2f1 φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y ⟨“ xy ”⟩ : dom ⟨“ xy ”⟩ 1-1 D
76 5 20 74 75 tocycfvres2 φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y M ⟨“ xy ”⟩ D ran ⟨“ xy ”⟩ = I D ran ⟨“ xy ”⟩
77 76 reseq1d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y M ⟨“ xy ”⟩ D ran ⟨“ xy ”⟩ ran u = I D ran ⟨“ xy ”⟩ ran u
78 simplr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T u w Word D | w : dom w 1-1 D . -1 3
79 78 elin1d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T u w Word D | w : dom w 1-1 D
80 id w = u w = u
81 dmeq w = u dom w = dom u
82 eqidd w = u D = D
83 80 81 82 f1eq123d w = u w : dom w 1-1 D u : dom u 1-1 D
84 83 elrab u w Word D | w : dom w 1-1 D u Word D u : dom u 1-1 D
85 79 84 sylib φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T u Word D u : dom u 1-1 D
86 85 simprd φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T u : dom u 1-1 D
87 f1f u : dom u 1-1 D u : dom u D
88 frn u : dom u D ran u D
89 86 87 88 3syl φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T ran u D
90 89 ad3antrrr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y ran u D
91 24 26 prssd φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y x y D ran u
92 ssconb x y D ran u D x y D ran u ran u D x y
93 92 biimpa x y D ran u D x y D ran u ran u D x y
94 28 90 91 93 syl21anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y ran u D x y
95 24 26 s2rn φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y ran ⟨“ xy ”⟩ = x y
96 95 difeq2d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y D ran ⟨“ xy ”⟩ = D x y
97 94 96 sseqtrrd φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y ran u D ran ⟨“ xy ”⟩
98 97 resabs1d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y M ⟨“ xy ”⟩ D ran ⟨“ xy ”⟩ ran u = M ⟨“ xy ”⟩ ran u
99 97 resabs1d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y I D ran ⟨“ xy ”⟩ ran u = I ran u
100 77 98 99 3eqtr3d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y M ⟨“ xy ”⟩ ran u = I ran u
101 73 100 eqtr3d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y pmTrsp D x y ran u = I ran u
102 simp-4r φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y M u = T
103 102 reseq1d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y M u D ran u = T D ran u
104 85 simpld φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T u Word D
105 104 ad3antrrr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y u Word D
106 86 ad3antrrr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y u : dom u 1-1 D
107 5 20 105 106 tocycfvres2 φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y M u D ran u = I D ran u
108 103 107 eqtr3d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y T D ran u = I D ran u
109 disjdif ran u D ran u =
110 109 a1i φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y ran u D ran u =
111 undif ran u D ran u D ran u = D
112 90 111 sylib φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y ran u D ran u = D
113 3 36 47 71 101 108 110 112 symgcom φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y pmTrsp D x y T = T pmTrsp D x y
114 113 coeq2d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g pmTrsp D x y T = g T pmTrsp D x y
115 3 36 6 symgov g Base S pmTrsp D x y Base S g + ˙ pmTrsp D x y = g pmTrsp D x y
116 21 47 115 syl2anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g + ˙ pmTrsp D x y = g pmTrsp D x y
117 3 36 6 symgcl g Base S pmTrsp D x y Base S g + ˙ pmTrsp D x y Base S
118 21 47 117 syl2anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g + ˙ pmTrsp D x y Base S
119 116 118 eqeltrrd φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g pmTrsp D x y Base S
120 3 36 6 symgov g pmTrsp D x y Base S T Base S g pmTrsp D x y + ˙ T = g pmTrsp D x y T
121 119 71 120 syl2anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g pmTrsp D x y + ˙ T = g pmTrsp D x y T
122 coass g pmTrsp D x y T = g pmTrsp D x y T
123 121 122 eqtrdi φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g pmTrsp D x y + ˙ T = g pmTrsp D x y T
124 coass g T pmTrsp D x y = g T pmTrsp D x y
125 124 a1i φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g T pmTrsp D x y = g T pmTrsp D x y
126 114 123 125 3eqtr4d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g pmTrsp D x y + ˙ T = g T pmTrsp D x y
127 cnvco g pmTrsp D x y -1 = pmTrsp D x y -1 g -1
128 127 a1i φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g pmTrsp D x y -1 = pmTrsp D x y -1 g -1
129 126 128 coeq12d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g pmTrsp D x y + ˙ T g pmTrsp D x y -1 = g T pmTrsp D x y pmTrsp D x y -1 g -1
130 coass g T pmTrsp D x y pmTrsp D x y -1 g -1 = g T pmTrsp D x y pmTrsp D x y -1 g -1
131 coass g T pmTrsp D x y pmTrsp D x y -1 = g T pmTrsp D x y pmTrsp D x y -1
132 131 coeq1i g T pmTrsp D x y pmTrsp D x y -1 g -1 = g T pmTrsp D x y pmTrsp D x y -1 g -1
133 130 132 eqtr3i g T pmTrsp D x y pmTrsp D x y -1 g -1 = g T pmTrsp D x y pmTrsp D x y -1 g -1
134 133 a1i φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g T pmTrsp D x y pmTrsp D x y -1 g -1 = g T pmTrsp D x y pmTrsp D x y -1 g -1
135 3 36 6 symgov g Base S T Base S g + ˙ T = g T
136 21 71 135 syl2anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g + ˙ T = g T
137 3 36 6 symgcl g Base S T Base S g + ˙ T Base S
138 21 71 137 syl2anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g + ˙ T Base S
139 136 138 eqeltrrd φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g T Base S
140 3 36 symgbasf g T Base S g T : D D
141 fcoi1 g T : D D g T I D = g T
142 139 140 141 3syl φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g T I D = g T
143 3 36 elsymgbas D Fin pmTrsp D x y Base S pmTrsp D x y : D 1-1 onto D
144 143 biimpa D Fin pmTrsp D x y Base S pmTrsp D x y : D 1-1 onto D
145 20 47 144 syl2anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y pmTrsp D x y : D 1-1 onto D
146 f1ococnv2 pmTrsp D x y : D 1-1 onto D pmTrsp D x y pmTrsp D x y -1 = I D
147 145 146 syl φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y pmTrsp D x y pmTrsp D x y -1 = I D
148 147 coeq2d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g T pmTrsp D x y pmTrsp D x y -1 = g T I D
149 142 148 136 3eqtr4d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g T pmTrsp D x y pmTrsp D x y -1 = g + ˙ T
150 149 coeq1d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g T pmTrsp D x y pmTrsp D x y -1 g -1 = g + ˙ T g -1
151 3 36 7 symgsubg g + ˙ T Base S g Base S g + ˙ T - ˙ g = g + ˙ T g -1
152 138 21 151 syl2anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g + ˙ T - ˙ g = g + ˙ T g -1
153 150 152 eqtr4d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g T pmTrsp D x y pmTrsp D x y -1 g -1 = g + ˙ T - ˙ g
154 129 134 153 3eqtrd φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g pmTrsp D x y + ˙ T g pmTrsp D x y -1 = g + ˙ T - ˙ g
155 3 symggrp D Fin S Grp
156 9 155 syl φ S Grp
157 156 ad8antr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y S Grp
158 36 6 grpcl S Grp g pmTrsp D x y Base S T Base S g pmTrsp D x y + ˙ T Base S
159 157 119 71 158 syl3anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g pmTrsp D x y + ˙ T Base S
160 3 36 7 symgsubg g pmTrsp D x y + ˙ T Base S g pmTrsp D x y Base S g pmTrsp D x y + ˙ T - ˙ g pmTrsp D x y = g pmTrsp D x y + ˙ T g pmTrsp D x y -1
161 159 119 160 syl2anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y g pmTrsp D x y + ˙ T - ˙ g pmTrsp D x y = g pmTrsp D x y + ˙ T g pmTrsp D x y -1
162 simp-7r φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y Q = g + ˙ T - ˙ g
163 154 161 162 3eqtr4rd φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y Q = g pmTrsp D x y + ˙ T - ˙ g pmTrsp D x y
164 42 46 163 rspcedvd φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y p A Q = p + ˙ T - ˙ p
165 9 difexd φ D ran u V
166 165 ad5antr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T D ran u V
167 3p2e5 3 + 2 = 5
168 167 8 eqbrtrid φ 3 + 2 N
169 2re 2
170 169 a1i φ 2
171 56 170 62 leaddsub2d φ 3 + 2 N 2 N 3
172 168 171 mpbid φ 2 N 3
173 172 ad5antr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T 2 N 3
174 4 a1i φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T N = D
175 78 elin2d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T u . -1 3
176 hashf . : V 0 +∞
177 ffn . : V 0 +∞ . Fn V
178 fniniseg . Fn V u . -1 3 u V u = 3
179 176 177 178 mp2b u . -1 3 u V u = 3
180 179 simprbi u . -1 3 u = 3
181 175 180 syl φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T u = 3
182 vex u V
183 182 dmex dom u V
184 hashf1rn dom u V u : dom u 1-1 D u = ran u
185 183 86 184 sylancr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T u = ran u
186 181 185 eqtr3d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T 3 = ran u
187 174 186 oveq12d φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T N 3 = D ran u
188 173 187 breqtrd φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T 2 D ran u
189 hashssdif D Fin ran u D D ran u = D ran u
190 19 89 189 syl2anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T D ran u = D ran u
191 188 190 breqtrrd φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T 2 D ran u
192 hashge2el2dif D ran u V 2 D ran u x D ran u y D ran u x y
193 166 191 192 syl2anc φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T x D ran u y D ran u x y
194 164 193 r19.29vva φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T p A Q = p + ˙ T - ˙ p
195 nfcv _ u M
196 5 3 36 tocycf D Fin M : w Word D | w : dom w 1-1 D Base S
197 ffn M : w Word D | w : dom w 1-1 D Base S M Fn w Word D | w : dom w 1-1 D
198 9 196 197 3syl φ M Fn w Word D | w : dom w 1-1 D
199 11 1 eleqtrdi φ T M . -1 3
200 195 198 199 fvelimad φ u w Word D | w : dom w 1-1 D . -1 3 M u = T
201 200 ad3antrrr φ g Base S Q = g + ˙ T - ˙ g ¬ g A u w Word D | w : dom w 1-1 D . -1 3 M u = T
202 194 201 r19.29a φ g Base S Q = g + ˙ T - ˙ g ¬ g A p A Q = p + ˙ T - ˙ p
203 18 202 pm2.61dan φ g Base S Q = g + ˙ T - ˙ g p A Q = p + ˙ T - ˙ p
204 1 3 4 5 36 6 7 67 9 10 11 cycpmconjs φ g Base S Q = g + ˙ T - ˙ g
205 203 204 r19.29a φ p A Q = p + ˙ T - ˙ p