Step |
Hyp |
Ref |
Expression |
1 |
|
cyc3conja.c |
|- C = ( M " ( `' # " { 3 } ) ) |
2 |
|
cyc3conja.a |
|- A = ( pmEven ` D ) |
3 |
|
cyc3conja.s |
|- S = ( SymGrp ` D ) |
4 |
|
cyc3conja.n |
|- N = ( # ` D ) |
5 |
|
cyc3conja.m |
|- M = ( toCyc ` D ) |
6 |
|
cyc3conja.p |
|- .+ = ( +g ` S ) |
7 |
|
cyc3conja.l |
|- .- = ( -g ` S ) |
8 |
|
cyc3conja.1 |
|- ( ph -> 5 <_ N ) |
9 |
|
cyc3conja.d |
|- ( ph -> D e. Fin ) |
10 |
|
cyc3conja.q |
|- ( ph -> Q e. C ) |
11 |
|
cyc3conja.t |
|- ( ph -> T e. C ) |
12 |
|
simpr |
|- ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ g e. A ) -> g e. A ) |
13 |
|
simpr |
|- ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ g e. A ) /\ p = g ) -> p = g ) |
14 |
13
|
oveq1d |
|- ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ g e. A ) /\ p = g ) -> ( p .+ T ) = ( g .+ T ) ) |
15 |
14 13
|
oveq12d |
|- ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ g e. A ) /\ p = g ) -> ( ( p .+ T ) .- p ) = ( ( g .+ T ) .- g ) ) |
16 |
15
|
eqeq2d |
|- ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ g e. A ) /\ p = g ) -> ( Q = ( ( p .+ T ) .- p ) <-> Q = ( ( g .+ T ) .- g ) ) ) |
17 |
|
simplr |
|- ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ g e. A ) -> Q = ( ( g .+ T ) .- g ) ) |
18 |
12 16 17
|
rspcedvd |
|- ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ g e. A ) -> E. p e. A Q = ( ( p .+ T ) .- p ) ) |
19 |
9
|
ad5antr |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> D e. Fin ) |
20 |
19
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> D e. Fin ) |
21 |
|
simp-8r |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> g e. ( Base ` S ) ) |
22 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> -. g e. A ) |
23 |
21 22
|
eldifd |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> g e. ( ( Base ` S ) \ A ) ) |
24 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> x e. ( D \ ran u ) ) |
25 |
24
|
eldifad |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> x e. D ) |
26 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> y e. ( D \ ran u ) ) |
27 |
26
|
eldifad |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> y e. D ) |
28 |
25 27
|
prssd |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> { x , y } C_ D ) |
29 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> x =/= y ) |
30 |
|
pr2nelem |
|- ( ( x e. ( D \ ran u ) /\ y e. ( D \ ran u ) /\ x =/= y ) -> { x , y } ~~ 2o ) |
31 |
24 26 29 30
|
syl3anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> { x , y } ~~ 2o ) |
32 |
|
eqid |
|- ( pmTrsp ` D ) = ( pmTrsp ` D ) |
33 |
|
eqid |
|- ran ( pmTrsp ` D ) = ran ( pmTrsp ` D ) |
34 |
32 33
|
pmtrrn |
|- ( ( D e. Fin /\ { x , y } C_ D /\ { x , y } ~~ 2o ) -> ( ( pmTrsp ` D ) ` { x , y } ) e. ran ( pmTrsp ` D ) ) |
35 |
20 28 31 34
|
syl3anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( pmTrsp ` D ) ` { x , y } ) e. ran ( pmTrsp ` D ) ) |
36 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
37 |
3 36 33
|
pmtrodpm |
|- ( ( D e. Fin /\ ( ( pmTrsp ` D ) ` { x , y } ) e. ran ( pmTrsp ` D ) ) -> ( ( pmTrsp ` D ) ` { x , y } ) e. ( ( Base ` S ) \ ( pmEven ` D ) ) ) |
38 |
20 35 37
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( pmTrsp ` D ) ` { x , y } ) e. ( ( Base ` S ) \ ( pmEven ` D ) ) ) |
39 |
2
|
difeq2i |
|- ( ( Base ` S ) \ A ) = ( ( Base ` S ) \ ( pmEven ` D ) ) |
40 |
38 39
|
eleqtrrdi |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( pmTrsp ` D ) ` { x , y } ) e. ( ( Base ` S ) \ A ) ) |
41 |
3 36 2
|
odpmco |
|- ( ( D e. Fin /\ g e. ( ( Base ` S ) \ A ) /\ ( ( pmTrsp ` D ) ` { x , y } ) e. ( ( Base ` S ) \ A ) ) -> ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) e. A ) |
42 |
20 23 40 41
|
syl3anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) e. A ) |
43 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) /\ p = ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) -> p = ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) |
44 |
43
|
oveq1d |
|- ( ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) /\ p = ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) -> ( p .+ T ) = ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) ) |
45 |
44 43
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) /\ p = ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) -> ( ( p .+ T ) .- p ) = ( ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) .- ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) ) |
46 |
45
|
eqeq2d |
|- ( ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) /\ p = ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) -> ( Q = ( ( p .+ T ) .- p ) <-> Q = ( ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) .- ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) ) ) |
47 |
38
|
eldifad |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( pmTrsp ` D ) ` { x , y } ) e. ( Base ` S ) ) |
48 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
49 |
|
hashcl |
|- ( D e. Fin -> ( # ` D ) e. NN0 ) |
50 |
9 49
|
syl |
|- ( ph -> ( # ` D ) e. NN0 ) |
51 |
4 50
|
eqeltrid |
|- ( ph -> N e. NN0 ) |
52 |
51
|
nn0zd |
|- ( ph -> N e. ZZ ) |
53 |
|
3z |
|- 3 e. ZZ |
54 |
53
|
a1i |
|- ( ph -> 3 e. ZZ ) |
55 |
|
0red |
|- ( ph -> 0 e. RR ) |
56 |
54
|
zred |
|- ( ph -> 3 e. RR ) |
57 |
|
3pos |
|- 0 < 3 |
58 |
57
|
a1i |
|- ( ph -> 0 < 3 ) |
59 |
55 56 58
|
ltled |
|- ( ph -> 0 <_ 3 ) |
60 |
|
5re |
|- 5 e. RR |
61 |
60
|
a1i |
|- ( ph -> 5 e. RR ) |
62 |
51
|
nn0red |
|- ( ph -> N e. RR ) |
63 |
|
3lt5 |
|- 3 < 5 |
64 |
63
|
a1i |
|- ( ph -> 3 < 5 ) |
65 |
56 61 64
|
ltled |
|- ( ph -> 3 <_ 5 ) |
66 |
56 61 62 65 8
|
letrd |
|- ( ph -> 3 <_ N ) |
67 |
48 52 54 59 66
|
elfzd |
|- ( ph -> 3 e. ( 0 ... N ) ) |
68 |
1 3 4 5 36
|
cycpmgcl |
|- ( ( D e. Fin /\ 3 e. ( 0 ... N ) ) -> C C_ ( Base ` S ) ) |
69 |
9 67 68
|
syl2anc |
|- ( ph -> C C_ ( Base ` S ) ) |
70 |
69 11
|
sseldd |
|- ( ph -> T e. ( Base ` S ) ) |
71 |
70
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> T e. ( Base ` S ) ) |
72 |
5 20 25 27 29 32
|
cycpm2tr |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( M ` <" x y "> ) = ( ( pmTrsp ` D ) ` { x , y } ) ) |
73 |
72
|
reseq1d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( M ` <" x y "> ) |` ran u ) = ( ( ( pmTrsp ` D ) ` { x , y } ) |` ran u ) ) |
74 |
25 27
|
s2cld |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> <" x y "> e. Word D ) |
75 |
25 27 29
|
s2f1 |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> <" x y "> : dom <" x y "> -1-1-> D ) |
76 |
5 20 74 75
|
tocycfvres2 |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( M ` <" x y "> ) |` ( D \ ran <" x y "> ) ) = ( _I |` ( D \ ran <" x y "> ) ) ) |
77 |
76
|
reseq1d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( ( M ` <" x y "> ) |` ( D \ ran <" x y "> ) ) |` ran u ) = ( ( _I |` ( D \ ran <" x y "> ) ) |` ran u ) ) |
78 |
|
simplr |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) |
79 |
78
|
elin1d |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> u e. { w e. Word D | w : dom w -1-1-> D } ) |
80 |
|
id |
|- ( w = u -> w = u ) |
81 |
|
dmeq |
|- ( w = u -> dom w = dom u ) |
82 |
|
eqidd |
|- ( w = u -> D = D ) |
83 |
80 81 82
|
f1eq123d |
|- ( w = u -> ( w : dom w -1-1-> D <-> u : dom u -1-1-> D ) ) |
84 |
83
|
elrab |
|- ( u e. { w e. Word D | w : dom w -1-1-> D } <-> ( u e. Word D /\ u : dom u -1-1-> D ) ) |
85 |
79 84
|
sylib |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> ( u e. Word D /\ u : dom u -1-1-> D ) ) |
86 |
85
|
simprd |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> u : dom u -1-1-> D ) |
87 |
|
f1f |
|- ( u : dom u -1-1-> D -> u : dom u --> D ) |
88 |
|
frn |
|- ( u : dom u --> D -> ran u C_ D ) |
89 |
86 87 88
|
3syl |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> ran u C_ D ) |
90 |
89
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ran u C_ D ) |
91 |
24 26
|
prssd |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> { x , y } C_ ( D \ ran u ) ) |
92 |
|
ssconb |
|- ( ( { x , y } C_ D /\ ran u C_ D ) -> ( { x , y } C_ ( D \ ran u ) <-> ran u C_ ( D \ { x , y } ) ) ) |
93 |
92
|
biimpa |
|- ( ( ( { x , y } C_ D /\ ran u C_ D ) /\ { x , y } C_ ( D \ ran u ) ) -> ran u C_ ( D \ { x , y } ) ) |
94 |
28 90 91 93
|
syl21anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ran u C_ ( D \ { x , y } ) ) |
95 |
24 26
|
s2rn |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ran <" x y "> = { x , y } ) |
96 |
95
|
difeq2d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( D \ ran <" x y "> ) = ( D \ { x , y } ) ) |
97 |
94 96
|
sseqtrrd |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ran u C_ ( D \ ran <" x y "> ) ) |
98 |
97
|
resabs1d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( ( M ` <" x y "> ) |` ( D \ ran <" x y "> ) ) |` ran u ) = ( ( M ` <" x y "> ) |` ran u ) ) |
99 |
97
|
resabs1d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( _I |` ( D \ ran <" x y "> ) ) |` ran u ) = ( _I |` ran u ) ) |
100 |
77 98 99
|
3eqtr3d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( M ` <" x y "> ) |` ran u ) = ( _I |` ran u ) ) |
101 |
73 100
|
eqtr3d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( ( pmTrsp ` D ) ` { x , y } ) |` ran u ) = ( _I |` ran u ) ) |
102 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( M ` u ) = T ) |
103 |
102
|
reseq1d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( M ` u ) |` ( D \ ran u ) ) = ( T |` ( D \ ran u ) ) ) |
104 |
85
|
simpld |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> u e. Word D ) |
105 |
104
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> u e. Word D ) |
106 |
86
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> u : dom u -1-1-> D ) |
107 |
5 20 105 106
|
tocycfvres2 |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( M ` u ) |` ( D \ ran u ) ) = ( _I |` ( D \ ran u ) ) ) |
108 |
103 107
|
eqtr3d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( T |` ( D \ ran u ) ) = ( _I |` ( D \ ran u ) ) ) |
109 |
|
disjdif |
|- ( ran u i^i ( D \ ran u ) ) = (/) |
110 |
109
|
a1i |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ran u i^i ( D \ ran u ) ) = (/) ) |
111 |
|
undif |
|- ( ran u C_ D <-> ( ran u u. ( D \ ran u ) ) = D ) |
112 |
90 111
|
sylib |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ran u u. ( D \ ran u ) ) = D ) |
113 |
3 36 47 71 101 108 110 112
|
symgcom |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( ( pmTrsp ` D ) ` { x , y } ) o. T ) = ( T o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) |
114 |
113
|
coeq2d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( g o. ( ( ( pmTrsp ` D ) ` { x , y } ) o. T ) ) = ( g o. ( T o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) ) |
115 |
3 36 6
|
symgov |
|- ( ( g e. ( Base ` S ) /\ ( ( pmTrsp ` D ) ` { x , y } ) e. ( Base ` S ) ) -> ( g .+ ( ( pmTrsp ` D ) ` { x , y } ) ) = ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) |
116 |
21 47 115
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( g .+ ( ( pmTrsp ` D ) ` { x , y } ) ) = ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) |
117 |
3 36 6
|
symgcl |
|- ( ( g e. ( Base ` S ) /\ ( ( pmTrsp ` D ) ` { x , y } ) e. ( Base ` S ) ) -> ( g .+ ( ( pmTrsp ` D ) ` { x , y } ) ) e. ( Base ` S ) ) |
118 |
21 47 117
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( g .+ ( ( pmTrsp ` D ) ` { x , y } ) ) e. ( Base ` S ) ) |
119 |
116 118
|
eqeltrrd |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) e. ( Base ` S ) ) |
120 |
3 36 6
|
symgov |
|- ( ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) e. ( Base ` S ) /\ T e. ( Base ` S ) ) -> ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) = ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) o. T ) ) |
121 |
119 71 120
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) = ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) o. T ) ) |
122 |
|
coass |
|- ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) o. T ) = ( g o. ( ( ( pmTrsp ` D ) ` { x , y } ) o. T ) ) |
123 |
121 122
|
eqtrdi |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) = ( g o. ( ( ( pmTrsp ` D ) ` { x , y } ) o. T ) ) ) |
124 |
|
coass |
|- ( ( g o. T ) o. ( ( pmTrsp ` D ) ` { x , y } ) ) = ( g o. ( T o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) |
125 |
124
|
a1i |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( g o. T ) o. ( ( pmTrsp ` D ) ` { x , y } ) ) = ( g o. ( T o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) ) |
126 |
114 123 125
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) = ( ( g o. T ) o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) |
127 |
|
cnvco |
|- `' ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) = ( `' ( ( pmTrsp ` D ) ` { x , y } ) o. `' g ) |
128 |
127
|
a1i |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> `' ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) = ( `' ( ( pmTrsp ` D ) ` { x , y } ) o. `' g ) ) |
129 |
126 128
|
coeq12d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) o. `' ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) = ( ( ( g o. T ) o. ( ( pmTrsp ` D ) ` { x , y } ) ) o. ( `' ( ( pmTrsp ` D ) ` { x , y } ) o. `' g ) ) ) |
130 |
|
coass |
|- ( ( ( ( g o. T ) o. ( ( pmTrsp ` D ) ` { x , y } ) ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) o. `' g ) = ( ( ( g o. T ) o. ( ( pmTrsp ` D ) ` { x , y } ) ) o. ( `' ( ( pmTrsp ` D ) ` { x , y } ) o. `' g ) ) |
131 |
|
coass |
|- ( ( ( g o. T ) o. ( ( pmTrsp ` D ) ` { x , y } ) ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) = ( ( g o. T ) o. ( ( ( pmTrsp ` D ) ` { x , y } ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) ) |
132 |
131
|
coeq1i |
|- ( ( ( ( g o. T ) o. ( ( pmTrsp ` D ) ` { x , y } ) ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) o. `' g ) = ( ( ( g o. T ) o. ( ( ( pmTrsp ` D ) ` { x , y } ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) ) o. `' g ) |
133 |
130 132
|
eqtr3i |
|- ( ( ( g o. T ) o. ( ( pmTrsp ` D ) ` { x , y } ) ) o. ( `' ( ( pmTrsp ` D ) ` { x , y } ) o. `' g ) ) = ( ( ( g o. T ) o. ( ( ( pmTrsp ` D ) ` { x , y } ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) ) o. `' g ) |
134 |
133
|
a1i |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( ( g o. T ) o. ( ( pmTrsp ` D ) ` { x , y } ) ) o. ( `' ( ( pmTrsp ` D ) ` { x , y } ) o. `' g ) ) = ( ( ( g o. T ) o. ( ( ( pmTrsp ` D ) ` { x , y } ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) ) o. `' g ) ) |
135 |
3 36 6
|
symgov |
|- ( ( g e. ( Base ` S ) /\ T e. ( Base ` S ) ) -> ( g .+ T ) = ( g o. T ) ) |
136 |
21 71 135
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( g .+ T ) = ( g o. T ) ) |
137 |
3 36 6
|
symgcl |
|- ( ( g e. ( Base ` S ) /\ T e. ( Base ` S ) ) -> ( g .+ T ) e. ( Base ` S ) ) |
138 |
21 71 137
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( g .+ T ) e. ( Base ` S ) ) |
139 |
136 138
|
eqeltrrd |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( g o. T ) e. ( Base ` S ) ) |
140 |
3 36
|
symgbasf |
|- ( ( g o. T ) e. ( Base ` S ) -> ( g o. T ) : D --> D ) |
141 |
|
fcoi1 |
|- ( ( g o. T ) : D --> D -> ( ( g o. T ) o. ( _I |` D ) ) = ( g o. T ) ) |
142 |
139 140 141
|
3syl |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( g o. T ) o. ( _I |` D ) ) = ( g o. T ) ) |
143 |
3 36
|
elsymgbas |
|- ( D e. Fin -> ( ( ( pmTrsp ` D ) ` { x , y } ) e. ( Base ` S ) <-> ( ( pmTrsp ` D ) ` { x , y } ) : D -1-1-onto-> D ) ) |
144 |
143
|
biimpa |
|- ( ( D e. Fin /\ ( ( pmTrsp ` D ) ` { x , y } ) e. ( Base ` S ) ) -> ( ( pmTrsp ` D ) ` { x , y } ) : D -1-1-onto-> D ) |
145 |
20 47 144
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( pmTrsp ` D ) ` { x , y } ) : D -1-1-onto-> D ) |
146 |
|
f1ococnv2 |
|- ( ( ( pmTrsp ` D ) ` { x , y } ) : D -1-1-onto-> D -> ( ( ( pmTrsp ` D ) ` { x , y } ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) = ( _I |` D ) ) |
147 |
145 146
|
syl |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( ( pmTrsp ` D ) ` { x , y } ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) = ( _I |` D ) ) |
148 |
147
|
coeq2d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( g o. T ) o. ( ( ( pmTrsp ` D ) ` { x , y } ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) ) = ( ( g o. T ) o. ( _I |` D ) ) ) |
149 |
142 148 136
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( g o. T ) o. ( ( ( pmTrsp ` D ) ` { x , y } ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) ) = ( g .+ T ) ) |
150 |
149
|
coeq1d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( ( g o. T ) o. ( ( ( pmTrsp ` D ) ` { x , y } ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) ) o. `' g ) = ( ( g .+ T ) o. `' g ) ) |
151 |
3 36 7
|
symgsubg |
|- ( ( ( g .+ T ) e. ( Base ` S ) /\ g e. ( Base ` S ) ) -> ( ( g .+ T ) .- g ) = ( ( g .+ T ) o. `' g ) ) |
152 |
138 21 151
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( g .+ T ) .- g ) = ( ( g .+ T ) o. `' g ) ) |
153 |
150 152
|
eqtr4d |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( ( g o. T ) o. ( ( ( pmTrsp ` D ) ` { x , y } ) o. `' ( ( pmTrsp ` D ) ` { x , y } ) ) ) o. `' g ) = ( ( g .+ T ) .- g ) ) |
154 |
129 134 153
|
3eqtrd |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) o. `' ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) = ( ( g .+ T ) .- g ) ) |
155 |
3
|
symggrp |
|- ( D e. Fin -> S e. Grp ) |
156 |
9 155
|
syl |
|- ( ph -> S e. Grp ) |
157 |
156
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> S e. Grp ) |
158 |
36 6
|
grpcl |
|- ( ( S e. Grp /\ ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) e. ( Base ` S ) /\ T e. ( Base ` S ) ) -> ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) e. ( Base ` S ) ) |
159 |
157 119 71 158
|
syl3anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) e. ( Base ` S ) ) |
160 |
3 36 7
|
symgsubg |
|- ( ( ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) e. ( Base ` S ) /\ ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) e. ( Base ` S ) ) -> ( ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) .- ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) = ( ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) o. `' ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) ) |
161 |
159 119 160
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> ( ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) .- ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) = ( ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) o. `' ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) ) |
162 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> Q = ( ( g .+ T ) .- g ) ) |
163 |
154 161 162
|
3eqtr4rd |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> Q = ( ( ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) .+ T ) .- ( g o. ( ( pmTrsp ` D ) ` { x , y } ) ) ) ) |
164 |
42 46 163
|
rspcedvd |
|- ( ( ( ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) /\ x e. ( D \ ran u ) ) /\ y e. ( D \ ran u ) ) /\ x =/= y ) -> E. p e. A Q = ( ( p .+ T ) .- p ) ) |
165 |
9
|
difexd |
|- ( ph -> ( D \ ran u ) e. _V ) |
166 |
165
|
ad5antr |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> ( D \ ran u ) e. _V ) |
167 |
|
3p2e5 |
|- ( 3 + 2 ) = 5 |
168 |
167 8
|
eqbrtrid |
|- ( ph -> ( 3 + 2 ) <_ N ) |
169 |
|
2re |
|- 2 e. RR |
170 |
169
|
a1i |
|- ( ph -> 2 e. RR ) |
171 |
56 170 62
|
leaddsub2d |
|- ( ph -> ( ( 3 + 2 ) <_ N <-> 2 <_ ( N - 3 ) ) ) |
172 |
168 171
|
mpbid |
|- ( ph -> 2 <_ ( N - 3 ) ) |
173 |
172
|
ad5antr |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> 2 <_ ( N - 3 ) ) |
174 |
4
|
a1i |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> N = ( # ` D ) ) |
175 |
78
|
elin2d |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> u e. ( `' # " { 3 } ) ) |
176 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
177 |
|
ffn |
|- ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) |
178 |
|
fniniseg |
|- ( # Fn _V -> ( u e. ( `' # " { 3 } ) <-> ( u e. _V /\ ( # ` u ) = 3 ) ) ) |
179 |
176 177 178
|
mp2b |
|- ( u e. ( `' # " { 3 } ) <-> ( u e. _V /\ ( # ` u ) = 3 ) ) |
180 |
179
|
simprbi |
|- ( u e. ( `' # " { 3 } ) -> ( # ` u ) = 3 ) |
181 |
175 180
|
syl |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> ( # ` u ) = 3 ) |
182 |
|
vex |
|- u e. _V |
183 |
182
|
dmex |
|- dom u e. _V |
184 |
|
hashf1rn |
|- ( ( dom u e. _V /\ u : dom u -1-1-> D ) -> ( # ` u ) = ( # ` ran u ) ) |
185 |
183 86 184
|
sylancr |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> ( # ` u ) = ( # ` ran u ) ) |
186 |
181 185
|
eqtr3d |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> 3 = ( # ` ran u ) ) |
187 |
174 186
|
oveq12d |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> ( N - 3 ) = ( ( # ` D ) - ( # ` ran u ) ) ) |
188 |
173 187
|
breqtrd |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> 2 <_ ( ( # ` D ) - ( # ` ran u ) ) ) |
189 |
|
hashssdif |
|- ( ( D e. Fin /\ ran u C_ D ) -> ( # ` ( D \ ran u ) ) = ( ( # ` D ) - ( # ` ran u ) ) ) |
190 |
19 89 189
|
syl2anc |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> ( # ` ( D \ ran u ) ) = ( ( # ` D ) - ( # ` ran u ) ) ) |
191 |
188 190
|
breqtrrd |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> 2 <_ ( # ` ( D \ ran u ) ) ) |
192 |
|
hashge2el2dif |
|- ( ( ( D \ ran u ) e. _V /\ 2 <_ ( # ` ( D \ ran u ) ) ) -> E. x e. ( D \ ran u ) E. y e. ( D \ ran u ) x =/= y ) |
193 |
166 191 192
|
syl2anc |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> E. x e. ( D \ ran u ) E. y e. ( D \ ran u ) x =/= y ) |
194 |
164 193
|
r19.29vva |
|- ( ( ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( M ` u ) = T ) -> E. p e. A Q = ( ( p .+ T ) .- p ) ) |
195 |
|
nfcv |
|- F/_ u M |
196 |
5 3 36
|
tocycf |
|- ( D e. Fin -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
197 |
|
ffn |
|- ( M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) -> M Fn { w e. Word D | w : dom w -1-1-> D } ) |
198 |
9 196 197
|
3syl |
|- ( ph -> M Fn { w e. Word D | w : dom w -1-1-> D } ) |
199 |
11 1
|
eleqtrdi |
|- ( ph -> T e. ( M " ( `' # " { 3 } ) ) ) |
200 |
195 198 199
|
fvelimad |
|- ( ph -> E. u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ( M ` u ) = T ) |
201 |
200
|
ad3antrrr |
|- ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) -> E. u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ( M ` u ) = T ) |
202 |
194 201
|
r19.29a |
|- ( ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) /\ -. g e. A ) -> E. p e. A Q = ( ( p .+ T ) .- p ) ) |
203 |
18 202
|
pm2.61dan |
|- ( ( ( ph /\ g e. ( Base ` S ) ) /\ Q = ( ( g .+ T ) .- g ) ) -> E. p e. A Q = ( ( p .+ T ) .- p ) ) |
204 |
1 3 4 5 36 6 7 67 9 10 11
|
cycpmconjs |
|- ( ph -> E. g e. ( Base ` S ) Q = ( ( g .+ T ) .- g ) ) |
205 |
203 204
|
r19.29a |
|- ( ph -> E. p e. A Q = ( ( p .+ T ) .- p ) ) |