| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cyc3conja.c | ⊢ 𝐶  =  ( 𝑀  “  ( ◡ ♯  “  { 3 } ) ) | 
						
							| 2 |  | cyc3conja.a | ⊢ 𝐴  =  ( pmEven ‘ 𝐷 ) | 
						
							| 3 |  | cyc3conja.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 4 |  | cyc3conja.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐷 ) | 
						
							| 5 |  | cyc3conja.m | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 6 |  | cyc3conja.p | ⊢  +   =  ( +g ‘ 𝑆 ) | 
						
							| 7 |  | cyc3conja.l | ⊢  −   =  ( -g ‘ 𝑆 ) | 
						
							| 8 |  | cyc3conja.1 | ⊢ ( 𝜑  →  5  ≤  𝑁 ) | 
						
							| 9 |  | cyc3conja.d | ⊢ ( 𝜑  →  𝐷  ∈  Fin ) | 
						
							| 10 |  | cyc3conja.q | ⊢ ( 𝜑  →  𝑄  ∈  𝐶 ) | 
						
							| 11 |  | cyc3conja.t | ⊢ ( 𝜑  →  𝑇  ∈  𝐶 ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  𝑔  ∈  𝐴 )  →  𝑔  ∈  𝐴 ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  𝑔  ∈  𝐴 )  ∧  𝑝  =  𝑔 )  →  𝑝  =  𝑔 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  𝑔  ∈  𝐴 )  ∧  𝑝  =  𝑔 )  →  ( 𝑝  +  𝑇 )  =  ( 𝑔  +  𝑇 ) ) | 
						
							| 15 | 14 13 | oveq12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  𝑔  ∈  𝐴 )  ∧  𝑝  =  𝑔 )  →  ( ( 𝑝  +  𝑇 )  −  𝑝 )  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) ) | 
						
							| 16 | 15 | eqeq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  𝑔  ∈  𝐴 )  ∧  𝑝  =  𝑔 )  →  ( 𝑄  =  ( ( 𝑝  +  𝑇 )  −  𝑝 )  ↔  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) ) ) | 
						
							| 17 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  𝑔  ∈  𝐴 )  →  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) ) | 
						
							| 18 | 12 16 17 | rspcedvd | ⊢ ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  𝑔  ∈  𝐴 )  →  ∃ 𝑝  ∈  𝐴 𝑄  =  ( ( 𝑝  +  𝑇 )  −  𝑝 ) ) | 
						
							| 19 | 9 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  𝐷  ∈  Fin ) | 
						
							| 20 | 19 | ad3antrrr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝐷  ∈  Fin ) | 
						
							| 21 |  | simp-8r | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑔  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 22 |  | simp-6r | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ¬  𝑔  ∈  𝐴 ) | 
						
							| 23 | 21 22 | eldifd | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑔  ∈  ( ( Base ‘ 𝑆 )  ∖  𝐴 ) ) | 
						
							| 24 |  | simpllr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) ) | 
						
							| 25 | 24 | eldifad | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑥  ∈  𝐷 ) | 
						
							| 26 |  | simplr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) ) | 
						
							| 27 | 26 | eldifad | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑦  ∈  𝐷 ) | 
						
							| 28 | 25 27 | prssd | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  { 𝑥 ,  𝑦 }  ⊆  𝐷 ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑥  ≠  𝑦 ) | 
						
							| 30 |  | enpr2 | ⊢ ( ( 𝑥  ∈  ( 𝐷  ∖  ran  𝑢 )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 )  ∧  𝑥  ≠  𝑦 )  →  { 𝑥 ,  𝑦 }  ≈  2o ) | 
						
							| 31 | 24 26 29 30 | syl3anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  { 𝑥 ,  𝑦 }  ≈  2o ) | 
						
							| 32 |  | eqid | ⊢ ( pmTrsp ‘ 𝐷 )  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 33 |  | eqid | ⊢ ran  ( pmTrsp ‘ 𝐷 )  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 34 | 32 33 | pmtrrn | ⊢ ( ( 𝐷  ∈  Fin  ∧  { 𝑥 ,  𝑦 }  ⊆  𝐷  ∧  { 𝑥 ,  𝑦 }  ≈  2o )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∈  ran  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 35 | 20 28 31 34 | syl3anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∈  ran  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 36 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 37 | 3 36 33 | pmtrodpm | ⊢ ( ( 𝐷  ∈  Fin  ∧  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∈  ( ( Base ‘ 𝑆 )  ∖  ( pmEven ‘ 𝐷 ) ) ) | 
						
							| 38 | 20 35 37 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∈  ( ( Base ‘ 𝑆 )  ∖  ( pmEven ‘ 𝐷 ) ) ) | 
						
							| 39 | 2 | difeq2i | ⊢ ( ( Base ‘ 𝑆 )  ∖  𝐴 )  =  ( ( Base ‘ 𝑆 )  ∖  ( pmEven ‘ 𝐷 ) ) | 
						
							| 40 | 38 39 | eleqtrrdi | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∈  ( ( Base ‘ 𝑆 )  ∖  𝐴 ) ) | 
						
							| 41 | 3 36 2 | odpmco | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑔  ∈  ( ( Base ‘ 𝑆 )  ∖  𝐴 )  ∧  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∈  ( ( Base ‘ 𝑆 )  ∖  𝐴 ) )  →  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∈  𝐴 ) | 
						
							| 42 | 20 23 40 41 | syl3anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∈  𝐴 ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑝  =  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  →  𝑝  =  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑝  =  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  →  ( 𝑝  +  𝑇 )  =  ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 ) ) | 
						
							| 45 | 44 43 | oveq12d | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑝  =  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  →  ( ( 𝑝  +  𝑇 )  −  𝑝 )  =  ( ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  −  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) ) | 
						
							| 46 | 45 | eqeq2d | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑝  =  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  →  ( 𝑄  =  ( ( 𝑝  +  𝑇 )  −  𝑝 )  ↔  𝑄  =  ( ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  −  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) ) ) | 
						
							| 47 | 38 | eldifad | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 48 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 49 |  | hashcl | ⊢ ( 𝐷  ∈  Fin  →  ( ♯ ‘ 𝐷 )  ∈  ℕ0 ) | 
						
							| 50 | 9 49 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐷 )  ∈  ℕ0 ) | 
						
							| 51 | 4 50 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 52 | 51 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 53 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 54 | 53 | a1i | ⊢ ( 𝜑  →  3  ∈  ℤ ) | 
						
							| 55 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 56 | 54 | zred | ⊢ ( 𝜑  →  3  ∈  ℝ ) | 
						
							| 57 |  | 3pos | ⊢ 0  <  3 | 
						
							| 58 | 57 | a1i | ⊢ ( 𝜑  →  0  <  3 ) | 
						
							| 59 | 55 56 58 | ltled | ⊢ ( 𝜑  →  0  ≤  3 ) | 
						
							| 60 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 61 | 60 | a1i | ⊢ ( 𝜑  →  5  ∈  ℝ ) | 
						
							| 62 | 51 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 63 |  | 3lt5 | ⊢ 3  <  5 | 
						
							| 64 | 63 | a1i | ⊢ ( 𝜑  →  3  <  5 ) | 
						
							| 65 | 56 61 64 | ltled | ⊢ ( 𝜑  →  3  ≤  5 ) | 
						
							| 66 | 56 61 62 65 8 | letrd | ⊢ ( 𝜑  →  3  ≤  𝑁 ) | 
						
							| 67 | 48 52 54 59 66 | elfzd | ⊢ ( 𝜑  →  3  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 68 | 1 3 4 5 36 | cycpmgcl | ⊢ ( ( 𝐷  ∈  Fin  ∧  3  ∈  ( 0 ... 𝑁 ) )  →  𝐶  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 69 | 9 67 68 | syl2anc | ⊢ ( 𝜑  →  𝐶  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 70 | 69 11 | sseldd | ⊢ ( 𝜑  →  𝑇  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 71 | 70 | ad8antr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑇  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 72 | 5 20 25 27 29 32 | cycpm2tr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 )  =  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) | 
						
							| 73 | 72 | reseq1d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 )  ↾  ran  𝑢 )  =  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ↾  ran  𝑢 ) ) | 
						
							| 74 | 25 27 | s2cld | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  〈“ 𝑥 𝑦 ”〉  ∈  Word  𝐷 ) | 
						
							| 75 | 25 27 29 | s2f1 | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  〈“ 𝑥 𝑦 ”〉 : dom  〈“ 𝑥 𝑦 ”〉 –1-1→ 𝐷 ) | 
						
							| 76 | 5 20 74 75 | tocycfvres2 | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 )  ↾  ( 𝐷  ∖  ran  〈“ 𝑥 𝑦 ”〉 ) )  =  (  I   ↾  ( 𝐷  ∖  ran  〈“ 𝑥 𝑦 ”〉 ) ) ) | 
						
							| 77 | 76 | reseq1d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 )  ↾  ( 𝐷  ∖  ran  〈“ 𝑥 𝑦 ”〉 ) )  ↾  ran  𝑢 )  =  ( (  I   ↾  ( 𝐷  ∖  ran  〈“ 𝑥 𝑦 ”〉 ) )  ↾  ran  𝑢 ) ) | 
						
							| 78 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) ) | 
						
							| 79 | 78 | elin1d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  𝑢  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 80 |  | id | ⊢ ( 𝑤  =  𝑢  →  𝑤  =  𝑢 ) | 
						
							| 81 |  | dmeq | ⊢ ( 𝑤  =  𝑢  →  dom  𝑤  =  dom  𝑢 ) | 
						
							| 82 |  | eqidd | ⊢ ( 𝑤  =  𝑢  →  𝐷  =  𝐷 ) | 
						
							| 83 | 80 81 82 | f1eq123d | ⊢ ( 𝑤  =  𝑢  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑢 : dom  𝑢 –1-1→ 𝐷 ) ) | 
						
							| 84 | 83 | elrab | ⊢ ( 𝑢  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  ( 𝑢  ∈  Word  𝐷  ∧  𝑢 : dom  𝑢 –1-1→ 𝐷 ) ) | 
						
							| 85 | 79 84 | sylib | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  ( 𝑢  ∈  Word  𝐷  ∧  𝑢 : dom  𝑢 –1-1→ 𝐷 ) ) | 
						
							| 86 | 85 | simprd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  𝑢 : dom  𝑢 –1-1→ 𝐷 ) | 
						
							| 87 |  | f1f | ⊢ ( 𝑢 : dom  𝑢 –1-1→ 𝐷  →  𝑢 : dom  𝑢 ⟶ 𝐷 ) | 
						
							| 88 |  | frn | ⊢ ( 𝑢 : dom  𝑢 ⟶ 𝐷  →  ran  𝑢  ⊆  𝐷 ) | 
						
							| 89 | 86 87 88 | 3syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  ran  𝑢  ⊆  𝐷 ) | 
						
							| 90 | 89 | ad3antrrr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ran  𝑢  ⊆  𝐷 ) | 
						
							| 91 | 24 26 | prssd | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  { 𝑥 ,  𝑦 }  ⊆  ( 𝐷  ∖  ran  𝑢 ) ) | 
						
							| 92 |  | ssconb | ⊢ ( ( { 𝑥 ,  𝑦 }  ⊆  𝐷  ∧  ran  𝑢  ⊆  𝐷 )  →  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝐷  ∖  ran  𝑢 )  ↔  ran  𝑢  ⊆  ( 𝐷  ∖  { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 93 | 92 | biimpa | ⊢ ( ( ( { 𝑥 ,  𝑦 }  ⊆  𝐷  ∧  ran  𝑢  ⊆  𝐷 )  ∧  { 𝑥 ,  𝑦 }  ⊆  ( 𝐷  ∖  ran  𝑢 ) )  →  ran  𝑢  ⊆  ( 𝐷  ∖  { 𝑥 ,  𝑦 } ) ) | 
						
							| 94 | 28 90 91 93 | syl21anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ran  𝑢  ⊆  ( 𝐷  ∖  { 𝑥 ,  𝑦 } ) ) | 
						
							| 95 | 24 26 | s2rn | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ran  〈“ 𝑥 𝑦 ”〉  =  { 𝑥 ,  𝑦 } ) | 
						
							| 96 | 95 | difeq2d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝐷  ∖  ran  〈“ 𝑥 𝑦 ”〉 )  =  ( 𝐷  ∖  { 𝑥 ,  𝑦 } ) ) | 
						
							| 97 | 94 96 | sseqtrrd | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ran  𝑢  ⊆  ( 𝐷  ∖  ran  〈“ 𝑥 𝑦 ”〉 ) ) | 
						
							| 98 | 97 | resabs1d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 )  ↾  ( 𝐷  ∖  ran  〈“ 𝑥 𝑦 ”〉 ) )  ↾  ran  𝑢 )  =  ( ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 )  ↾  ran  𝑢 ) ) | 
						
							| 99 | 97 | resabs1d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( (  I   ↾  ( 𝐷  ∖  ran  〈“ 𝑥 𝑦 ”〉 ) )  ↾  ran  𝑢 )  =  (  I   ↾  ran  𝑢 ) ) | 
						
							| 100 | 77 98 99 | 3eqtr3d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 )  ↾  ran  𝑢 )  =  (  I   ↾  ran  𝑢 ) ) | 
						
							| 101 | 73 100 | eqtr3d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ↾  ran  𝑢 )  =  (  I   ↾  ran  𝑢 ) ) | 
						
							| 102 |  | simp-4r | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑀 ‘ 𝑢 )  =  𝑇 ) | 
						
							| 103 | 102 | reseq1d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑀 ‘ 𝑢 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  ( 𝑇  ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 104 | 85 | simpld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  𝑢  ∈  Word  𝐷 ) | 
						
							| 105 | 104 | ad3antrrr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑢  ∈  Word  𝐷 ) | 
						
							| 106 | 86 | ad3antrrr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑢 : dom  𝑢 –1-1→ 𝐷 ) | 
						
							| 107 | 5 20 105 106 | tocycfvres2 | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑀 ‘ 𝑢 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 108 | 103 107 | eqtr3d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑇  ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 109 |  | disjdif | ⊢ ( ran  𝑢  ∩  ( 𝐷  ∖  ran  𝑢 ) )  =  ∅ | 
						
							| 110 | 109 | a1i | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ran  𝑢  ∩  ( 𝐷  ∖  ran  𝑢 ) )  =  ∅ ) | 
						
							| 111 |  | undif | ⊢ ( ran  𝑢  ⊆  𝐷  ↔  ( ran  𝑢  ∪  ( 𝐷  ∖  ran  𝑢 ) )  =  𝐷 ) | 
						
							| 112 | 90 111 | sylib | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ran  𝑢  ∪  ( 𝐷  ∖  ran  𝑢 ) )  =  𝐷 ) | 
						
							| 113 | 3 36 47 71 101 108 110 112 | symgcom | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  𝑇 )  =  ( 𝑇  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 114 | 113 | coeq2d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑔  ∘  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  𝑇 ) )  =  ( 𝑔  ∘  ( 𝑇  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) ) | 
						
							| 115 | 3 36 6 | symgov | ⊢ ( ( 𝑔  ∈  ( Base ‘ 𝑆 )  ∧  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑔  +  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  =  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 116 | 21 47 115 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑔  +  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  =  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 117 | 3 36 6 | symgcl | ⊢ ( ( 𝑔  ∈  ( Base ‘ 𝑆 )  ∧  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑔  +  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 118 | 21 47 117 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑔  +  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 119 | 116 118 | eqeltrrd | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 120 | 3 36 6 | symgov | ⊢ ( ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∈  ( Base ‘ 𝑆 )  ∧  𝑇  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  =  ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∘  𝑇 ) ) | 
						
							| 121 | 119 71 120 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  =  ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∘  𝑇 ) ) | 
						
							| 122 |  | coass | ⊢ ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∘  𝑇 )  =  ( 𝑔  ∘  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  𝑇 ) ) | 
						
							| 123 | 121 122 | eqtrdi | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  =  ( 𝑔  ∘  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  𝑇 ) ) ) | 
						
							| 124 |  | coass | ⊢ ( ( 𝑔  ∘  𝑇 )  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  =  ( 𝑔  ∘  ( 𝑇  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 125 | 124 | a1i | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑔  ∘  𝑇 )  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  =  ( 𝑔  ∘  ( 𝑇  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) ) | 
						
							| 126 | 114 123 125 | 3eqtr4d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  =  ( ( 𝑔  ∘  𝑇 )  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 127 |  | cnvco | ⊢ ◡ ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  =  ( ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ 𝑔 ) | 
						
							| 128 | 127 | a1i | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ◡ ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  =  ( ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ 𝑔 ) ) | 
						
							| 129 | 126 128 | coeq12d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  ∘  ◡ ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  =  ( ( ( 𝑔  ∘  𝑇 )  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∘  ( ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ 𝑔 ) ) ) | 
						
							| 130 |  | coass | ⊢ ( ( ( ( 𝑔  ∘  𝑇 )  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∘  ◡ 𝑔 )  =  ( ( ( 𝑔  ∘  𝑇 )  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∘  ( ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ 𝑔 ) ) | 
						
							| 131 |  | coass | ⊢ ( ( ( 𝑔  ∘  𝑇 )  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  =  ( ( 𝑔  ∘  𝑇 )  ∘  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 132 | 131 | coeq1i | ⊢ ( ( ( ( 𝑔  ∘  𝑇 )  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∘  ◡ 𝑔 )  =  ( ( ( 𝑔  ∘  𝑇 )  ∘  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  ∘  ◡ 𝑔 ) | 
						
							| 133 | 130 132 | eqtr3i | ⊢ ( ( ( 𝑔  ∘  𝑇 )  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∘  ( ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ 𝑔 ) )  =  ( ( ( 𝑔  ∘  𝑇 )  ∘  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  ∘  ◡ 𝑔 ) | 
						
							| 134 | 133 | a1i | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( ( 𝑔  ∘  𝑇 )  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∘  ( ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ 𝑔 ) )  =  ( ( ( 𝑔  ∘  𝑇 )  ∘  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  ∘  ◡ 𝑔 ) ) | 
						
							| 135 | 3 36 6 | symgov | ⊢ ( ( 𝑔  ∈  ( Base ‘ 𝑆 )  ∧  𝑇  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑔  +  𝑇 )  =  ( 𝑔  ∘  𝑇 ) ) | 
						
							| 136 | 21 71 135 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑔  +  𝑇 )  =  ( 𝑔  ∘  𝑇 ) ) | 
						
							| 137 | 3 36 6 | symgcl | ⊢ ( ( 𝑔  ∈  ( Base ‘ 𝑆 )  ∧  𝑇  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑔  +  𝑇 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 138 | 21 71 137 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑔  +  𝑇 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 139 | 136 138 | eqeltrrd | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑔  ∘  𝑇 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 140 | 3 36 | symgbasf | ⊢ ( ( 𝑔  ∘  𝑇 )  ∈  ( Base ‘ 𝑆 )  →  ( 𝑔  ∘  𝑇 ) : 𝐷 ⟶ 𝐷 ) | 
						
							| 141 |  | fcoi1 | ⊢ ( ( 𝑔  ∘  𝑇 ) : 𝐷 ⟶ 𝐷  →  ( ( 𝑔  ∘  𝑇 )  ∘  (  I   ↾  𝐷 ) )  =  ( 𝑔  ∘  𝑇 ) ) | 
						
							| 142 | 139 140 141 | 3syl | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑔  ∘  𝑇 )  ∘  (  I   ↾  𝐷 ) )  =  ( 𝑔  ∘  𝑇 ) ) | 
						
							| 143 | 3 36 | elsymgbas | ⊢ ( 𝐷  ∈  Fin  →  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∈  ( Base ‘ 𝑆 )  ↔  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) : 𝐷 –1-1-onto→ 𝐷 ) ) | 
						
							| 144 | 143 | biimpa | ⊢ ( ( 𝐷  ∈  Fin  ∧  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∈  ( Base ‘ 𝑆 ) )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 145 | 20 47 144 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 146 |  | f1ococnv2 | ⊢ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) : 𝐷 –1-1-onto→ 𝐷  →  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 147 | 145 146 | syl | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 148 | 147 | coeq2d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑔  ∘  𝑇 )  ∘  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  =  ( ( 𝑔  ∘  𝑇 )  ∘  (  I   ↾  𝐷 ) ) ) | 
						
							| 149 | 142 148 136 | 3eqtr4d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑔  ∘  𝑇 )  ∘  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  =  ( 𝑔  +  𝑇 ) ) | 
						
							| 150 | 149 | coeq1d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( ( 𝑔  ∘  𝑇 )  ∘  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  ∘  ◡ 𝑔 )  =  ( ( 𝑔  +  𝑇 )  ∘  ◡ 𝑔 ) ) | 
						
							| 151 | 3 36 7 | symgsubg | ⊢ ( ( ( 𝑔  +  𝑇 )  ∈  ( Base ‘ 𝑆 )  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝑔  +  𝑇 )  −  𝑔 )  =  ( ( 𝑔  +  𝑇 )  ∘  ◡ 𝑔 ) ) | 
						
							| 152 | 138 21 151 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑔  +  𝑇 )  −  𝑔 )  =  ( ( 𝑔  +  𝑇 )  ∘  ◡ 𝑔 ) ) | 
						
							| 153 | 150 152 | eqtr4d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( ( 𝑔  ∘  𝑇 )  ∘  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } )  ∘  ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  ∘  ◡ 𝑔 )  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) ) | 
						
							| 154 | 129 134 153 | 3eqtrd | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  ∘  ◡ ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) ) | 
						
							| 155 | 3 | symggrp | ⊢ ( 𝐷  ∈  Fin  →  𝑆  ∈  Grp ) | 
						
							| 156 | 9 155 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Grp ) | 
						
							| 157 | 156 | ad8antr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑆  ∈  Grp ) | 
						
							| 158 | 36 6 | grpcl | ⊢ ( ( 𝑆  ∈  Grp  ∧  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∈  ( Base ‘ 𝑆 )  ∧  𝑇  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 159 | 157 119 71 158 | syl3anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 160 | 3 36 7 | symgsubg | ⊢ ( ( ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  −  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  =  ( ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  ∘  ◡ ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) ) | 
						
							| 161 | 159 119 160 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  −  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) )  =  ( ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  ∘  ◡ ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) ) | 
						
							| 162 |  | simp-7r | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) ) | 
						
							| 163 | 154 161 162 | 3eqtr4rd | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑄  =  ( ( ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) )  +  𝑇 )  −  ( 𝑔  ∘  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 ,  𝑦 } ) ) ) ) | 
						
							| 164 | 42 46 163 | rspcedvd | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  ∧  𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) )  ∧  𝑥  ≠  𝑦 )  →  ∃ 𝑝  ∈  𝐴 𝑄  =  ( ( 𝑝  +  𝑇 )  −  𝑝 ) ) | 
						
							| 165 | 9 | difexd | ⊢ ( 𝜑  →  ( 𝐷  ∖  ran  𝑢 )  ∈  V ) | 
						
							| 166 | 165 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  ( 𝐷  ∖  ran  𝑢 )  ∈  V ) | 
						
							| 167 |  | 3p2e5 | ⊢ ( 3  +  2 )  =  5 | 
						
							| 168 | 167 8 | eqbrtrid | ⊢ ( 𝜑  →  ( 3  +  2 )  ≤  𝑁 ) | 
						
							| 169 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 170 | 169 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 171 | 56 170 62 | leaddsub2d | ⊢ ( 𝜑  →  ( ( 3  +  2 )  ≤  𝑁  ↔  2  ≤  ( 𝑁  −  3 ) ) ) | 
						
							| 172 | 168 171 | mpbid | ⊢ ( 𝜑  →  2  ≤  ( 𝑁  −  3 ) ) | 
						
							| 173 | 172 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  2  ≤  ( 𝑁  −  3 ) ) | 
						
							| 174 | 4 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  𝑁  =  ( ♯ ‘ 𝐷 ) ) | 
						
							| 175 | 78 | elin2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  𝑢  ∈  ( ◡ ♯  “  { 3 } ) ) | 
						
							| 176 |  | hashf | ⊢ ♯ : V ⟶ ( ℕ0  ∪  { +∞ } ) | 
						
							| 177 |  | ffn | ⊢ ( ♯ : V ⟶ ( ℕ0  ∪  { +∞ } )  →  ♯  Fn  V ) | 
						
							| 178 |  | fniniseg | ⊢ ( ♯  Fn  V  →  ( 𝑢  ∈  ( ◡ ♯  “  { 3 } )  ↔  ( 𝑢  ∈  V  ∧  ( ♯ ‘ 𝑢 )  =  3 ) ) ) | 
						
							| 179 | 176 177 178 | mp2b | ⊢ ( 𝑢  ∈  ( ◡ ♯  “  { 3 } )  ↔  ( 𝑢  ∈  V  ∧  ( ♯ ‘ 𝑢 )  =  3 ) ) | 
						
							| 180 | 179 | simprbi | ⊢ ( 𝑢  ∈  ( ◡ ♯  “  { 3 } )  →  ( ♯ ‘ 𝑢 )  =  3 ) | 
						
							| 181 | 175 180 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  ( ♯ ‘ 𝑢 )  =  3 ) | 
						
							| 182 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 183 | 182 | dmex | ⊢ dom  𝑢  ∈  V | 
						
							| 184 |  | hashf1rn | ⊢ ( ( dom  𝑢  ∈  V  ∧  𝑢 : dom  𝑢 –1-1→ 𝐷 )  →  ( ♯ ‘ 𝑢 )  =  ( ♯ ‘ ran  𝑢 ) ) | 
						
							| 185 | 183 86 184 | sylancr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  ( ♯ ‘ 𝑢 )  =  ( ♯ ‘ ran  𝑢 ) ) | 
						
							| 186 | 181 185 | eqtr3d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  3  =  ( ♯ ‘ ran  𝑢 ) ) | 
						
							| 187 | 174 186 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  ( 𝑁  −  3 )  =  ( ( ♯ ‘ 𝐷 )  −  ( ♯ ‘ ran  𝑢 ) ) ) | 
						
							| 188 | 173 187 | breqtrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  2  ≤  ( ( ♯ ‘ 𝐷 )  −  ( ♯ ‘ ran  𝑢 ) ) ) | 
						
							| 189 |  | hashssdif | ⊢ ( ( 𝐷  ∈  Fin  ∧  ran  𝑢  ⊆  𝐷 )  →  ( ♯ ‘ ( 𝐷  ∖  ran  𝑢 ) )  =  ( ( ♯ ‘ 𝐷 )  −  ( ♯ ‘ ran  𝑢 ) ) ) | 
						
							| 190 | 19 89 189 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  ( ♯ ‘ ( 𝐷  ∖  ran  𝑢 ) )  =  ( ( ♯ ‘ 𝐷 )  −  ( ♯ ‘ ran  𝑢 ) ) ) | 
						
							| 191 | 188 190 | breqtrrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  2  ≤  ( ♯ ‘ ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 192 |  | hashge2el2dif | ⊢ ( ( ( 𝐷  ∖  ran  𝑢 )  ∈  V  ∧  2  ≤  ( ♯ ‘ ( 𝐷  ∖  ran  𝑢 ) ) )  →  ∃ 𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) ∃ 𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) 𝑥  ≠  𝑦 ) | 
						
							| 193 | 166 191 192 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  ∃ 𝑥  ∈  ( 𝐷  ∖  ran  𝑢 ) ∃ 𝑦  ∈  ( 𝐷  ∖  ran  𝑢 ) 𝑥  ≠  𝑦 ) | 
						
							| 194 | 164 193 | r19.29vva | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑇 )  →  ∃ 𝑝  ∈  𝐴 𝑄  =  ( ( 𝑝  +  𝑇 )  −  𝑝 ) ) | 
						
							| 195 |  | nfcv | ⊢ Ⅎ 𝑢 𝑀 | 
						
							| 196 | 5 3 36 | tocycf | ⊢ ( 𝐷  ∈  Fin  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 197 |  | ffn | ⊢ ( 𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 )  →  𝑀  Fn  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 198 | 9 196 197 | 3syl | ⊢ ( 𝜑  →  𝑀  Fn  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 199 | 11 1 | eleqtrdi | ⊢ ( 𝜑  →  𝑇  ∈  ( 𝑀  “  ( ◡ ♯  “  { 3 } ) ) ) | 
						
							| 200 | 195 198 199 | fvelimad | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) ( 𝑀 ‘ 𝑢 )  =  𝑇 ) | 
						
							| 201 | 200 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  →  ∃ 𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 3 } ) ) ( 𝑀 ‘ 𝑢 )  =  𝑇 ) | 
						
							| 202 | 194 201 | r19.29a | ⊢ ( ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  ∧  ¬  𝑔  ∈  𝐴 )  →  ∃ 𝑝  ∈  𝐴 𝑄  =  ( ( 𝑝  +  𝑇 )  −  𝑝 ) ) | 
						
							| 203 | 18 202 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( Base ‘ 𝑆 ) )  ∧  𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) )  →  ∃ 𝑝  ∈  𝐴 𝑄  =  ( ( 𝑝  +  𝑇 )  −  𝑝 ) ) | 
						
							| 204 | 1 3 4 5 36 6 7 67 9 10 11 | cycpmconjs | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  ( Base ‘ 𝑆 ) 𝑄  =  ( ( 𝑔  +  𝑇 )  −  𝑔 ) ) | 
						
							| 205 | 203 204 | r19.29a | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  𝐴 𝑄  =  ( ( 𝑝  +  𝑇 )  −  𝑝 ) ) |