| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cyc3conja.c |
⊢ 𝐶 = ( 𝑀 “ ( ◡ ♯ “ { 3 } ) ) |
| 2 |
|
cyc3conja.a |
⊢ 𝐴 = ( pmEven ‘ 𝐷 ) |
| 3 |
|
cyc3conja.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 4 |
|
cyc3conja.n |
⊢ 𝑁 = ( ♯ ‘ 𝐷 ) |
| 5 |
|
cyc3conja.m |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
| 6 |
|
cyc3conja.p |
⊢ + = ( +g ‘ 𝑆 ) |
| 7 |
|
cyc3conja.l |
⊢ − = ( -g ‘ 𝑆 ) |
| 8 |
|
cyc3conja.1 |
⊢ ( 𝜑 → 5 ≤ 𝑁 ) |
| 9 |
|
cyc3conja.d |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
| 10 |
|
cyc3conja.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐶 ) |
| 11 |
|
cyc3conja.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐶 ) |
| 12 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ 𝐴 ) |
| 13 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑝 = 𝑔 ) → 𝑝 = 𝑔 ) |
| 14 |
13
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑝 = 𝑔 ) → ( 𝑝 + 𝑇 ) = ( 𝑔 + 𝑇 ) ) |
| 15 |
14 13
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑝 = 𝑔 ) → ( ( 𝑝 + 𝑇 ) − 𝑝 ) = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) |
| 16 |
15
|
eqeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑝 = 𝑔 ) → ( 𝑄 = ( ( 𝑝 + 𝑇 ) − 𝑝 ) ↔ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ) |
| 17 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ 𝑔 ∈ 𝐴 ) → 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) |
| 18 |
12 16 17
|
rspcedvd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ 𝑔 ∈ 𝐴 ) → ∃ 𝑝 ∈ 𝐴 𝑄 = ( ( 𝑝 + 𝑇 ) − 𝑝 ) ) |
| 19 |
9
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → 𝐷 ∈ Fin ) |
| 20 |
19
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝐷 ∈ Fin ) |
| 21 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑔 ∈ ( Base ‘ 𝑆 ) ) |
| 22 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ¬ 𝑔 ∈ 𝐴 ) |
| 23 |
21 22
|
eldifd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑔 ∈ ( ( Base ‘ 𝑆 ) ∖ 𝐴 ) ) |
| 24 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) |
| 25 |
24
|
eldifad |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ 𝐷 ) |
| 26 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) |
| 27 |
26
|
eldifad |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 ∈ 𝐷 ) |
| 28 |
25 27
|
prssd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → { 𝑥 , 𝑦 } ⊆ 𝐷 ) |
| 29 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ≠ 𝑦 ) |
| 30 |
|
enpr2 |
⊢ ( ( 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ∧ 𝑥 ≠ 𝑦 ) → { 𝑥 , 𝑦 } ≈ 2o ) |
| 31 |
24 26 29 30
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → { 𝑥 , 𝑦 } ≈ 2o ) |
| 32 |
|
eqid |
⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) |
| 33 |
|
eqid |
⊢ ran ( pmTrsp ‘ 𝐷 ) = ran ( pmTrsp ‘ 𝐷 ) |
| 34 |
32 33
|
pmtrrn |
⊢ ( ( 𝐷 ∈ Fin ∧ { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ { 𝑥 , 𝑦 } ≈ 2o ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
| 35 |
20 28 31 34
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
| 36 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 37 |
3 36 33
|
pmtrodpm |
⊢ ( ( 𝐷 ∈ Fin ∧ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∈ ( ( Base ‘ 𝑆 ) ∖ ( pmEven ‘ 𝐷 ) ) ) |
| 38 |
20 35 37
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∈ ( ( Base ‘ 𝑆 ) ∖ ( pmEven ‘ 𝐷 ) ) ) |
| 39 |
2
|
difeq2i |
⊢ ( ( Base ‘ 𝑆 ) ∖ 𝐴 ) = ( ( Base ‘ 𝑆 ) ∖ ( pmEven ‘ 𝐷 ) ) |
| 40 |
38 39
|
eleqtrrdi |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∈ ( ( Base ‘ 𝑆 ) ∖ 𝐴 ) ) |
| 41 |
3 36 2
|
odpmco |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑔 ∈ ( ( Base ‘ 𝑆 ) ∖ 𝐴 ) ∧ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∈ ( ( Base ‘ 𝑆 ) ∖ 𝐴 ) ) → ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∈ 𝐴 ) |
| 42 |
20 23 40 41
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∈ 𝐴 ) |
| 43 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑝 = ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑝 = ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) |
| 44 |
43
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑝 = ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) → ( 𝑝 + 𝑇 ) = ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) ) |
| 45 |
44 43
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑝 = ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) → ( ( 𝑝 + 𝑇 ) − 𝑝 ) = ( ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) − ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 46 |
45
|
eqeq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑝 = ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) → ( 𝑄 = ( ( 𝑝 + 𝑇 ) − 𝑝 ) ↔ 𝑄 = ( ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) − ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) ) ) |
| 47 |
38
|
eldifad |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∈ ( Base ‘ 𝑆 ) ) |
| 48 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 49 |
|
hashcl |
⊢ ( 𝐷 ∈ Fin → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) |
| 50 |
9 49
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) |
| 51 |
4 50
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 52 |
51
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 53 |
|
3z |
⊢ 3 ∈ ℤ |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℤ ) |
| 55 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 56 |
54
|
zred |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 57 |
|
3pos |
⊢ 0 < 3 |
| 58 |
57
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
| 59 |
55 56 58
|
ltled |
⊢ ( 𝜑 → 0 ≤ 3 ) |
| 60 |
|
5re |
⊢ 5 ∈ ℝ |
| 61 |
60
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℝ ) |
| 62 |
51
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 63 |
|
3lt5 |
⊢ 3 < 5 |
| 64 |
63
|
a1i |
⊢ ( 𝜑 → 3 < 5 ) |
| 65 |
56 61 64
|
ltled |
⊢ ( 𝜑 → 3 ≤ 5 ) |
| 66 |
56 61 62 65 8
|
letrd |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
| 67 |
48 52 54 59 66
|
elfzd |
⊢ ( 𝜑 → 3 ∈ ( 0 ... 𝑁 ) ) |
| 68 |
1 3 4 5 36
|
cycpmgcl |
⊢ ( ( 𝐷 ∈ Fin ∧ 3 ∈ ( 0 ... 𝑁 ) ) → 𝐶 ⊆ ( Base ‘ 𝑆 ) ) |
| 69 |
9 67 68
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ⊆ ( Base ‘ 𝑆 ) ) |
| 70 |
69 11
|
sseldd |
⊢ ( 𝜑 → 𝑇 ∈ ( Base ‘ 𝑆 ) ) |
| 71 |
70
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑇 ∈ ( Base ‘ 𝑆 ) ) |
| 72 |
5 20 25 27 29 32
|
cycpm2tr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 ) = ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) |
| 73 |
72
|
reseq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 ) ↾ ran 𝑢 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ↾ ran 𝑢 ) ) |
| 74 |
25 27
|
s2cld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 〈“ 𝑥 𝑦 ”〉 ∈ Word 𝐷 ) |
| 75 |
25 27 29
|
s2f1 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 〈“ 𝑥 𝑦 ”〉 : dom 〈“ 𝑥 𝑦 ”〉 –1-1→ 𝐷 ) |
| 76 |
5 20 74 75
|
tocycfvres2 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 ) ↾ ( 𝐷 ∖ ran 〈“ 𝑥 𝑦 ”〉 ) ) = ( I ↾ ( 𝐷 ∖ ran 〈“ 𝑥 𝑦 ”〉 ) ) ) |
| 77 |
76
|
reseq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 ) ↾ ( 𝐷 ∖ ran 〈“ 𝑥 𝑦 ”〉 ) ) ↾ ran 𝑢 ) = ( ( I ↾ ( 𝐷 ∖ ran 〈“ 𝑥 𝑦 ”〉 ) ) ↾ ran 𝑢 ) ) |
| 78 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) |
| 79 |
78
|
elin1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 80 |
|
id |
⊢ ( 𝑤 = 𝑢 → 𝑤 = 𝑢 ) |
| 81 |
|
dmeq |
⊢ ( 𝑤 = 𝑢 → dom 𝑤 = dom 𝑢 ) |
| 82 |
|
eqidd |
⊢ ( 𝑤 = 𝑢 → 𝐷 = 𝐷 ) |
| 83 |
80 81 82
|
f1eq123d |
⊢ ( 𝑤 = 𝑢 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
| 84 |
83
|
elrab |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑢 ∈ Word 𝐷 ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
| 85 |
79 84
|
sylib |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → ( 𝑢 ∈ Word 𝐷 ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
| 86 |
85
|
simprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
| 87 |
|
f1f |
⊢ ( 𝑢 : dom 𝑢 –1-1→ 𝐷 → 𝑢 : dom 𝑢 ⟶ 𝐷 ) |
| 88 |
|
frn |
⊢ ( 𝑢 : dom 𝑢 ⟶ 𝐷 → ran 𝑢 ⊆ 𝐷 ) |
| 89 |
86 87 88
|
3syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → ran 𝑢 ⊆ 𝐷 ) |
| 90 |
89
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ran 𝑢 ⊆ 𝐷 ) |
| 91 |
24 26
|
prssd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → { 𝑥 , 𝑦 } ⊆ ( 𝐷 ∖ ran 𝑢 ) ) |
| 92 |
|
ssconb |
⊢ ( ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ran 𝑢 ⊆ 𝐷 ) → ( { 𝑥 , 𝑦 } ⊆ ( 𝐷 ∖ ran 𝑢 ) ↔ ran 𝑢 ⊆ ( 𝐷 ∖ { 𝑥 , 𝑦 } ) ) ) |
| 93 |
92
|
biimpa |
⊢ ( ( ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ran 𝑢 ⊆ 𝐷 ) ∧ { 𝑥 , 𝑦 } ⊆ ( 𝐷 ∖ ran 𝑢 ) ) → ran 𝑢 ⊆ ( 𝐷 ∖ { 𝑥 , 𝑦 } ) ) |
| 94 |
28 90 91 93
|
syl21anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ran 𝑢 ⊆ ( 𝐷 ∖ { 𝑥 , 𝑦 } ) ) |
| 95 |
24 26
|
s2rn |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ran 〈“ 𝑥 𝑦 ”〉 = { 𝑥 , 𝑦 } ) |
| 96 |
95
|
difeq2d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝐷 ∖ ran 〈“ 𝑥 𝑦 ”〉 ) = ( 𝐷 ∖ { 𝑥 , 𝑦 } ) ) |
| 97 |
94 96
|
sseqtrrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ran 𝑢 ⊆ ( 𝐷 ∖ ran 〈“ 𝑥 𝑦 ”〉 ) ) |
| 98 |
97
|
resabs1d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 ) ↾ ( 𝐷 ∖ ran 〈“ 𝑥 𝑦 ”〉 ) ) ↾ ran 𝑢 ) = ( ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 ) ↾ ran 𝑢 ) ) |
| 99 |
97
|
resabs1d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( I ↾ ( 𝐷 ∖ ran 〈“ 𝑥 𝑦 ”〉 ) ) ↾ ran 𝑢 ) = ( I ↾ ran 𝑢 ) ) |
| 100 |
77 98 99
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑀 ‘ 〈“ 𝑥 𝑦 ”〉 ) ↾ ran 𝑢 ) = ( I ↾ ran 𝑢 ) ) |
| 101 |
73 100
|
eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ↾ ran 𝑢 ) = ( I ↾ ran 𝑢 ) ) |
| 102 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑀 ‘ 𝑢 ) = 𝑇 ) |
| 103 |
102
|
reseq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑀 ‘ 𝑢 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( 𝑇 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 104 |
85
|
simpld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → 𝑢 ∈ Word 𝐷 ) |
| 105 |
104
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑢 ∈ Word 𝐷 ) |
| 106 |
86
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
| 107 |
5 20 105 106
|
tocycfvres2 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑀 ‘ 𝑢 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 108 |
103 107
|
eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑇 ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 109 |
|
disjdif |
⊢ ( ran 𝑢 ∩ ( 𝐷 ∖ ran 𝑢 ) ) = ∅ |
| 110 |
109
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ran 𝑢 ∩ ( 𝐷 ∖ ran 𝑢 ) ) = ∅ ) |
| 111 |
|
undif |
⊢ ( ran 𝑢 ⊆ 𝐷 ↔ ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) = 𝐷 ) |
| 112 |
90 111
|
sylib |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) = 𝐷 ) |
| 113 |
3 36 47 71 101 108 110 112
|
symgcom |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ 𝑇 ) = ( 𝑇 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) |
| 114 |
113
|
coeq2d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑔 ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ 𝑇 ) ) = ( 𝑔 ∘ ( 𝑇 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 115 |
3 36 6
|
symgov |
⊢ ( ( 𝑔 ∈ ( Base ‘ 𝑆 ) ∧ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∈ ( Base ‘ 𝑆 ) ) → ( 𝑔 + ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) = ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) |
| 116 |
21 47 115
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑔 + ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) = ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) |
| 117 |
3 36 6
|
symgcl |
⊢ ( ( 𝑔 ∈ ( Base ‘ 𝑆 ) ∧ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∈ ( Base ‘ 𝑆 ) ) → ( 𝑔 + ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 118 |
21 47 117
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑔 + ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 119 |
116 118
|
eqeltrrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 120 |
3 36 6
|
symgov |
⊢ ( ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑇 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) = ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∘ 𝑇 ) ) |
| 121 |
119 71 120
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) = ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∘ 𝑇 ) ) |
| 122 |
|
coass |
⊢ ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∘ 𝑇 ) = ( 𝑔 ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ 𝑇 ) ) |
| 123 |
121 122
|
eqtrdi |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) = ( 𝑔 ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ 𝑇 ) ) ) |
| 124 |
|
coass |
⊢ ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) = ( 𝑔 ∘ ( 𝑇 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) |
| 125 |
124
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) = ( 𝑔 ∘ ( 𝑇 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 126 |
114 123 125
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) = ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) |
| 127 |
|
cnvco |
⊢ ◡ ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) = ( ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ 𝑔 ) |
| 128 |
127
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ◡ ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) = ( ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ 𝑔 ) ) |
| 129 |
126 128
|
coeq12d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) ∘ ◡ ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) = ( ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∘ ( ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ 𝑔 ) ) ) |
| 130 |
|
coass |
⊢ ( ( ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∘ ◡ 𝑔 ) = ( ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∘ ( ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ 𝑔 ) ) |
| 131 |
|
coass |
⊢ ( ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) = ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) |
| 132 |
131
|
coeq1i |
⊢ ( ( ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∘ ◡ 𝑔 ) = ( ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) ∘ ◡ 𝑔 ) |
| 133 |
130 132
|
eqtr3i |
⊢ ( ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∘ ( ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ 𝑔 ) ) = ( ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) ∘ ◡ 𝑔 ) |
| 134 |
133
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∘ ( ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ 𝑔 ) ) = ( ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) ∘ ◡ 𝑔 ) ) |
| 135 |
3 36 6
|
symgov |
⊢ ( ( 𝑔 ∈ ( Base ‘ 𝑆 ) ∧ 𝑇 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑔 + 𝑇 ) = ( 𝑔 ∘ 𝑇 ) ) |
| 136 |
21 71 135
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑔 + 𝑇 ) = ( 𝑔 ∘ 𝑇 ) ) |
| 137 |
3 36 6
|
symgcl |
⊢ ( ( 𝑔 ∈ ( Base ‘ 𝑆 ) ∧ 𝑇 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑔 + 𝑇 ) ∈ ( Base ‘ 𝑆 ) ) |
| 138 |
21 71 137
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑔 + 𝑇 ) ∈ ( Base ‘ 𝑆 ) ) |
| 139 |
136 138
|
eqeltrrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑔 ∘ 𝑇 ) ∈ ( Base ‘ 𝑆 ) ) |
| 140 |
3 36
|
symgbasf |
⊢ ( ( 𝑔 ∘ 𝑇 ) ∈ ( Base ‘ 𝑆 ) → ( 𝑔 ∘ 𝑇 ) : 𝐷 ⟶ 𝐷 ) |
| 141 |
|
fcoi1 |
⊢ ( ( 𝑔 ∘ 𝑇 ) : 𝐷 ⟶ 𝐷 → ( ( 𝑔 ∘ 𝑇 ) ∘ ( I ↾ 𝐷 ) ) = ( 𝑔 ∘ 𝑇 ) ) |
| 142 |
139 140 141
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑔 ∘ 𝑇 ) ∘ ( I ↾ 𝐷 ) ) = ( 𝑔 ∘ 𝑇 ) ) |
| 143 |
3 36
|
elsymgbas |
⊢ ( 𝐷 ∈ Fin → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∈ ( Base ‘ 𝑆 ) ↔ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) : 𝐷 –1-1-onto→ 𝐷 ) ) |
| 144 |
143
|
biimpa |
⊢ ( ( 𝐷 ∈ Fin ∧ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∈ ( Base ‘ 𝑆 ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 145 |
20 47 144
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 146 |
|
f1ococnv2 |
⊢ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) : 𝐷 –1-1-onto→ 𝐷 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) = ( I ↾ 𝐷 ) ) |
| 147 |
145 146
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) = ( I ↾ 𝐷 ) ) |
| 148 |
147
|
coeq2d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) = ( ( 𝑔 ∘ 𝑇 ) ∘ ( I ↾ 𝐷 ) ) ) |
| 149 |
142 148 136
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) = ( 𝑔 + 𝑇 ) ) |
| 150 |
149
|
coeq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) ∘ ◡ 𝑔 ) = ( ( 𝑔 + 𝑇 ) ∘ ◡ 𝑔 ) ) |
| 151 |
3 36 7
|
symgsubg |
⊢ ( ( ( 𝑔 + 𝑇 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑔 + 𝑇 ) − 𝑔 ) = ( ( 𝑔 + 𝑇 ) ∘ ◡ 𝑔 ) ) |
| 152 |
138 21 151
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑔 + 𝑇 ) − 𝑔 ) = ( ( 𝑔 + 𝑇 ) ∘ ◡ 𝑔 ) ) |
| 153 |
150 152
|
eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝑔 ∘ 𝑇 ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ∘ ◡ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) ∘ ◡ 𝑔 ) = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) |
| 154 |
129 134 153
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) ∘ ◡ ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) |
| 155 |
3
|
symggrp |
⊢ ( 𝐷 ∈ Fin → 𝑆 ∈ Grp ) |
| 156 |
9 155
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 157 |
156
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑆 ∈ Grp ) |
| 158 |
36 6
|
grpcl |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑇 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) ∈ ( Base ‘ 𝑆 ) ) |
| 159 |
157 119 71 158
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) ∈ ( Base ‘ 𝑆 ) ) |
| 160 |
3 36 7
|
symgsubg |
⊢ ( ( ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ∈ ( Base ‘ 𝑆 ) ) → ( ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) − ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) = ( ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) ∘ ◡ ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 161 |
159 119 160
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) − ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) = ( ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) ∘ ◡ ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 162 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) |
| 163 |
154 161 162
|
3eqtr4rd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑄 = ( ( ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) + 𝑇 ) − ( 𝑔 ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 164 |
42 46 163
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) ∧ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) ) ∧ 𝑥 ≠ 𝑦 ) → ∃ 𝑝 ∈ 𝐴 𝑄 = ( ( 𝑝 + 𝑇 ) − 𝑝 ) ) |
| 165 |
9
|
difexd |
⊢ ( 𝜑 → ( 𝐷 ∖ ran 𝑢 ) ∈ V ) |
| 166 |
165
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → ( 𝐷 ∖ ran 𝑢 ) ∈ V ) |
| 167 |
|
3p2e5 |
⊢ ( 3 + 2 ) = 5 |
| 168 |
167 8
|
eqbrtrid |
⊢ ( 𝜑 → ( 3 + 2 ) ≤ 𝑁 ) |
| 169 |
|
2re |
⊢ 2 ∈ ℝ |
| 170 |
169
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 171 |
56 170 62
|
leaddsub2d |
⊢ ( 𝜑 → ( ( 3 + 2 ) ≤ 𝑁 ↔ 2 ≤ ( 𝑁 − 3 ) ) ) |
| 172 |
168 171
|
mpbid |
⊢ ( 𝜑 → 2 ≤ ( 𝑁 − 3 ) ) |
| 173 |
172
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → 2 ≤ ( 𝑁 − 3 ) ) |
| 174 |
4
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → 𝑁 = ( ♯ ‘ 𝐷 ) ) |
| 175 |
78
|
elin2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → 𝑢 ∈ ( ◡ ♯ “ { 3 } ) ) |
| 176 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
| 177 |
|
ffn |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) |
| 178 |
|
fniniseg |
⊢ ( ♯ Fn V → ( 𝑢 ∈ ( ◡ ♯ “ { 3 } ) ↔ ( 𝑢 ∈ V ∧ ( ♯ ‘ 𝑢 ) = 3 ) ) ) |
| 179 |
176 177 178
|
mp2b |
⊢ ( 𝑢 ∈ ( ◡ ♯ “ { 3 } ) ↔ ( 𝑢 ∈ V ∧ ( ♯ ‘ 𝑢 ) = 3 ) ) |
| 180 |
179
|
simprbi |
⊢ ( 𝑢 ∈ ( ◡ ♯ “ { 3 } ) → ( ♯ ‘ 𝑢 ) = 3 ) |
| 181 |
175 180
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → ( ♯ ‘ 𝑢 ) = 3 ) |
| 182 |
|
vex |
⊢ 𝑢 ∈ V |
| 183 |
182
|
dmex |
⊢ dom 𝑢 ∈ V |
| 184 |
|
hashf1rn |
⊢ ( ( dom 𝑢 ∈ V ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ ran 𝑢 ) ) |
| 185 |
183 86 184
|
sylancr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ ran 𝑢 ) ) |
| 186 |
181 185
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → 3 = ( ♯ ‘ ran 𝑢 ) ) |
| 187 |
174 186
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → ( 𝑁 − 3 ) = ( ( ♯ ‘ 𝐷 ) − ( ♯ ‘ ran 𝑢 ) ) ) |
| 188 |
173 187
|
breqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → 2 ≤ ( ( ♯ ‘ 𝐷 ) − ( ♯ ‘ ran 𝑢 ) ) ) |
| 189 |
|
hashssdif |
⊢ ( ( 𝐷 ∈ Fin ∧ ran 𝑢 ⊆ 𝐷 ) → ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) = ( ( ♯ ‘ 𝐷 ) − ( ♯ ‘ ran 𝑢 ) ) ) |
| 190 |
19 89 189
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) = ( ( ♯ ‘ 𝐷 ) − ( ♯ ‘ ran 𝑢 ) ) ) |
| 191 |
188 190
|
breqtrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → 2 ≤ ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 192 |
|
hashge2el2dif |
⊢ ( ( ( 𝐷 ∖ ran 𝑢 ) ∈ V ∧ 2 ≤ ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) ) → ∃ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ∃ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) 𝑥 ≠ 𝑦 ) |
| 193 |
166 191 192
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → ∃ 𝑥 ∈ ( 𝐷 ∖ ran 𝑢 ) ∃ 𝑦 ∈ ( 𝐷 ∖ ran 𝑢 ) 𝑥 ≠ 𝑦 ) |
| 194 |
164 193
|
r19.29vva |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑇 ) → ∃ 𝑝 ∈ 𝐴 𝑄 = ( ( 𝑝 + 𝑇 ) − 𝑝 ) ) |
| 195 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑀 |
| 196 |
5 3 36
|
tocycf |
⊢ ( 𝐷 ∈ Fin → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
| 197 |
|
ffn |
⊢ ( 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) → 𝑀 Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 198 |
9 196 197
|
3syl |
⊢ ( 𝜑 → 𝑀 Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 199 |
11 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑀 “ ( ◡ ♯ “ { 3 } ) ) ) |
| 200 |
195 198 199
|
fvelimad |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ( 𝑀 ‘ 𝑢 ) = 𝑇 ) |
| 201 |
200
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) → ∃ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ( 𝑀 ‘ 𝑢 ) = 𝑇 ) |
| 202 |
194 201
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) ∧ ¬ 𝑔 ∈ 𝐴 ) → ∃ 𝑝 ∈ 𝐴 𝑄 = ( ( 𝑝 + 𝑇 ) − 𝑝 ) ) |
| 203 |
18 202
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) → ∃ 𝑝 ∈ 𝐴 𝑄 = ( ( 𝑝 + 𝑇 ) − 𝑝 ) ) |
| 204 |
1 3 4 5 36 6 7 67 9 10 11
|
cycpmconjs |
⊢ ( 𝜑 → ∃ 𝑔 ∈ ( Base ‘ 𝑆 ) 𝑄 = ( ( 𝑔 + 𝑇 ) − 𝑔 ) ) |
| 205 |
203 204
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝐴 𝑄 = ( ( 𝑝 + 𝑇 ) − 𝑝 ) ) |