Metamath Proof Explorer


Theorem decsmflem

Description: A nonincreasing function is Borel measurable. Proposition 121D (c) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses decsmflem.x xφ
decsmflem.y yφ
decsmflem.a φA
decsmflem.f φF:A*
decsmflem.i φxAyAxyFyFx
decsmflem.j J=topGenran.
decsmflem.b B=SalGenJ
decsmflem.r φR*
decsmflem.l Y=xA|R<Fx
decsmflem.c C=supY*<
decsmflem.d D=−∞C
decsmflem.e E=−∞C
Assertion decsmflem φbBY=bA

Proof

Step Hyp Ref Expression
1 decsmflem.x xφ
2 decsmflem.y yφ
3 decsmflem.a φA
4 decsmflem.f φF:A*
5 decsmflem.i φxAyAxyFyFx
6 decsmflem.j J=topGenran.
7 decsmflem.b B=SalGenJ
8 decsmflem.r φR*
9 decsmflem.l Y=xA|R<Fx
10 decsmflem.c C=supY*<
11 decsmflem.d D=−∞C
12 decsmflem.e E=−∞C
13 mnfxr −∞*
14 13 a1i φCY−∞*
15 ssrab2 xA|R<FxA
16 9 15 eqsstri YA
17 16 a1i φYA
18 17 3 sstrd φY
19 18 sselda φCYC
20 14 19 6 7 iocborel φCY−∞CB
21 12 20 eqeltrid φCYEB
22 nfrab1 _xxA|R<Fx
23 9 22 nfcxfr _xY
24 nfcv _x*
25 nfcv _x<
26 23 24 25 nfsup _xsupY*<
27 10 26 nfcxfr _xC
28 27 23 nfel xCY
29 1 28 nfan xφCY
30 3 adantr φCYA
31 4 adantr φCYF:A*
32 5 adantr φCYxAyAxyFyFx
33 8 adantr φCYR*
34 simpr φCYCY
35 29 30 31 32 33 9 10 34 12 pimdecfgtioc φCYY=EA
36 ineq1 b=EbA=EA
37 36 rspceeqv EBY=EAbBY=bA
38 21 35 37 syl2anc φCYbBY=bA
39 6 7 iooborel −∞CB
40 11 39 eqeltri DB
41 40 a1i φDB
42 41 adantr φ¬CYDB
43 28 nfn x¬CY
44 1 43 nfan xφ¬CY
45 nfv y¬CY
46 2 45 nfan yφ¬CY
47 3 adantr φ¬CYA
48 4 adantr φ¬CYF:A*
49 5 adantr φ¬CYxAyAxyFyFx
50 8 adantr φ¬CYR*
51 simpr φ¬CY¬CY
52 44 46 47 48 49 50 9 10 51 11 pimdecfgtioo φ¬CYY=DA
53 ineq1 b=DbA=DA
54 53 rspceeqv DBY=DAbBY=bA
55 42 52 54 syl2anc φ¬CYbBY=bA
56 38 55 pm2.61dan φbBY=bA