Metamath Proof Explorer


Theorem dfac3

Description: Equivalence of two versions of the Axiom of Choice. The left-hand side is defined as the Axiom of Choice (first form) of Enderton p. 49. The right-hand side is the Axiom of Choice of TakeutiZaring p. 83. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004) (Revised by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion dfac3 CHOICExfzxzfzz

Proof

Step Hyp Ref Expression
1 df-ac CHOICEyffyfFndomy
2 vex xV
3 vuniex xV
4 2 3 xpex x×xV
5 simpl wxvwwx
6 elunii vwwxvx
7 6 ancoms wxvwvx
8 5 7 jca wxvwwxvx
9 8 ssopab2i wv|wxvwwv|wxvx
10 df-xp x×x=wv|wxvx
11 9 10 sseqtrri wv|wxvwx×x
12 4 11 ssexi wv|wxvwV
13 sseq2 y=wv|wxvwfyfwv|wxvw
14 dmeq y=wv|wxvwdomy=domwv|wxvw
15 14 fneq2d y=wv|wxvwfFndomyfFndomwv|wxvw
16 13 15 anbi12d y=wv|wxvwfyfFndomyfwv|wxvwfFndomwv|wxvw
17 16 exbidv y=wv|wxvwffyfFndomyffwv|wxvwfFndomwv|wxvw
18 12 17 spcv yffyfFndomyffwv|wxvwfFndomwv|wxvw
19 fndm fFndomwv|wxvwdomf=domwv|wxvw
20 dmopab domwv|wxvw=w|vwxvw
21 20 eleq2i zdomwv|wxvwzw|vwxvw
22 vex zV
23 elequ1 w=zwxzx
24 eleq2 w=zvwvz
25 23 24 anbi12d w=zwxvwzxvz
26 25 exbidv w=zvwxvwvzxvz
27 22 26 elab zw|vwxvwvzxvz
28 19.42v vzxvzzxvvz
29 n0 zvvz
30 29 anbi2i zxzzxvvz
31 28 30 bitr4i vzxvzzxz
32 21 27 31 3bitrri zxzzdomwv|wxvw
33 eleq2 domf=domwv|wxvwzdomfzdomwv|wxvw
34 32 33 bitr4id domf=domwv|wxvwzxzzdomf
35 19 34 syl fFndomwv|wxvwzxzzdomf
36 35 adantl fwv|wxvwfFndomwv|wxvwzxzzdomf
37 fnfun fFndomwv|wxvwFunf
38 funfvima3 Funffwv|wxvwzdomffzwv|wxvwz
39 38 ancoms fwv|wxvwFunfzdomffzwv|wxvwz
40 37 39 sylan2 fwv|wxvwfFndomwv|wxvwzdomffzwv|wxvwz
41 36 40 sylbid fwv|wxvwfFndomwv|wxvwzxzfzwv|wxvwz
42 41 imp fwv|wxvwfFndomwv|wxvwzxzfzwv|wxvwz
43 imasng zVwv|wxvwz=u|zwv|wxvwu
44 43 elv wv|wxvwz=u|zwv|wxvwu
45 vex uV
46 elequ1 v=uvzuz
47 46 anbi2d v=uzxvzzxuz
48 eqid wv|wxvw=wv|wxvw
49 22 45 25 47 48 brab zwv|wxvwuzxuz
50 49 abbii u|zwv|wxvwu=u|zxuz
51 44 50 eqtri wv|wxvwz=u|zxuz
52 ibar zxuzzxuz
53 52 eqabdv zxz=u|zxuz
54 51 53 eqtr4id zxwv|wxvwz=z
55 54 eleq2d zxfzwv|wxvwzfzz
56 55 ad2antrl fwv|wxvwfFndomwv|wxvwzxzfzwv|wxvwzfzz
57 42 56 mpbid fwv|wxvwfFndomwv|wxvwzxzfzz
58 57 exp32 fwv|wxvwfFndomwv|wxvwzxzfzz
59 58 ralrimiv fwv|wxvwfFndomwv|wxvwzxzfzz
60 59 eximi ffwv|wxvwfFndomwv|wxvwfzxzfzz
61 18 60 syl yffyfFndomyfzxzfzz
62 61 alrimiv yffyfFndomyxfzxzfzz
63 eqid wdomyfu|wyu=wdomyfu|wyu
64 63 aceq3lem xfzxzfzzffyfFndomy
65 64 alrimiv xfzxzfzzyffyfFndomy
66 62 65 impbii yffyfFndomyxfzxzfzz
67 1 66 bitri CHOICExfzxzfzz