Description: Equivalence of two versions of the Axiom of Choice. The left-hand side is defined as the Axiom of Choice (first form) of Enderton p. 49. The right-hand side is the Axiom of Choice of TakeutiZaring p. 83. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004) (Revised by Stefan O'Rear, 22-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dfac3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ac | |
|
2 | vex | |
|
3 | vuniex | |
|
4 | 2 3 | xpex | |
5 | simpl | |
|
6 | elunii | |
|
7 | 6 | ancoms | |
8 | 5 7 | jca | |
9 | 8 | ssopab2i | |
10 | df-xp | |
|
11 | 9 10 | sseqtrri | |
12 | 4 11 | ssexi | |
13 | sseq2 | |
|
14 | dmeq | |
|
15 | 14 | fneq2d | |
16 | 13 15 | anbi12d | |
17 | 16 | exbidv | |
18 | 12 17 | spcv | |
19 | fndm | |
|
20 | dmopab | |
|
21 | 20 | eleq2i | |
22 | vex | |
|
23 | elequ1 | |
|
24 | eleq2 | |
|
25 | 23 24 | anbi12d | |
26 | 25 | exbidv | |
27 | 22 26 | elab | |
28 | 19.42v | |
|
29 | n0 | |
|
30 | 29 | anbi2i | |
31 | 28 30 | bitr4i | |
32 | 21 27 31 | 3bitrri | |
33 | eleq2 | |
|
34 | 32 33 | bitr4id | |
35 | 19 34 | syl | |
36 | 35 | adantl | |
37 | fnfun | |
|
38 | funfvima3 | |
|
39 | 38 | ancoms | |
40 | 37 39 | sylan2 | |
41 | 36 40 | sylbid | |
42 | 41 | imp | |
43 | imasng | |
|
44 | 43 | elv | |
45 | vex | |
|
46 | elequ1 | |
|
47 | 46 | anbi2d | |
48 | eqid | |
|
49 | 22 45 25 47 48 | brab | |
50 | 49 | abbii | |
51 | 44 50 | eqtri | |
52 | ibar | |
|
53 | 52 | eqabdv | |
54 | 51 53 | eqtr4id | |
55 | 54 | eleq2d | |
56 | 55 | ad2antrl | |
57 | 42 56 | mpbid | |
58 | 57 | exp32 | |
59 | 58 | ralrimiv | |
60 | 59 | eximi | |
61 | 18 60 | syl | |
62 | 61 | alrimiv | |
63 | eqid | |
|
64 | 63 | aceq3lem | |
65 | 64 | alrimiv | |
66 | 62 65 | impbii | |
67 | 1 66 | bitri | |