Metamath Proof Explorer


Theorem dff13

Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of Monk1 p. 43. (Contributed by NM, 29-Oct-1996)

Ref Expression
Assertion dff13 F:A1-1BF:ABxAyAFx=Fyx=y

Proof

Step Hyp Ref Expression
1 dff12 F:A1-1BF:ABz*xxFz
2 ffn F:ABFFnA
3 vex xV
4 vex zV
5 3 4 breldm xFzxdomF
6 fndm FFnAdomF=A
7 6 eleq2d FFnAxdomFxA
8 5 7 imbitrid FFnAxFzxA
9 vex yV
10 9 4 breldm yFzydomF
11 6 eleq2d FFnAydomFyA
12 10 11 imbitrid FFnAyFzyA
13 8 12 anim12d FFnAxFzyFzxAyA
14 13 pm4.71rd FFnAxFzyFzxAyAxFzyFz
15 eqcom z=FxFx=z
16 fnbrfvb FFnAxAFx=zxFz
17 15 16 bitrid FFnAxAz=FxxFz
18 eqcom z=FyFy=z
19 fnbrfvb FFnAyAFy=zyFz
20 18 19 bitrid FFnAyAz=FyyFz
21 17 20 bi2anan9 FFnAxAFFnAyAz=Fxz=FyxFzyFz
22 21 anandis FFnAxAyAz=Fxz=FyxFzyFz
23 22 pm5.32da FFnAxAyAz=Fxz=FyxAyAxFzyFz
24 14 23 bitr4d FFnAxFzyFzxAyAz=Fxz=Fy
25 24 imbi1d FFnAxFzyFzx=yxAyAz=Fxz=Fyx=y
26 impexp xAyAz=Fxz=Fyx=yxAyAz=Fxz=Fyx=y
27 25 26 bitrdi FFnAxFzyFzx=yxAyAz=Fxz=Fyx=y
28 27 albidv FFnAzxFzyFzx=yzxAyAz=Fxz=Fyx=y
29 19.21v zxAyAz=Fxz=Fyx=yxAyAzz=Fxz=Fyx=y
30 19.23v zz=Fxz=Fyx=yzz=Fxz=Fyx=y
31 fvex FxV
32 31 eqvinc Fx=Fyzz=Fxz=Fy
33 32 imbi1i Fx=Fyx=yzz=Fxz=Fyx=y
34 30 33 bitr4i zz=Fxz=Fyx=yFx=Fyx=y
35 34 imbi2i xAyAzz=Fxz=Fyx=yxAyAFx=Fyx=y
36 29 35 bitri zxAyAz=Fxz=Fyx=yxAyAFx=Fyx=y
37 28 36 bitrdi FFnAzxFzyFzx=yxAyAFx=Fyx=y
38 37 2albidv FFnAxyzxFzyFzx=yxyxAyAFx=Fyx=y
39 breq1 x=yxFzyFz
40 39 mo4 *xxFzxyxFzyFzx=y
41 40 albii z*xxFzzxyxFzyFzx=y
42 alrot3 zxyxFzyFzx=yxyzxFzyFzx=y
43 41 42 bitri z*xxFzxyzxFzyFzx=y
44 r2al xAyAFx=Fyx=yxyxAyAFx=Fyx=y
45 38 43 44 3bitr4g FFnAz*xxFzxAyAFx=Fyx=y
46 2 45 syl F:ABz*xxFzxAyAFx=Fyx=y
47 46 pm5.32i F:ABz*xxFzF:ABxAyAFx=Fyx=y
48 1 47 bitri F:A1-1BF:ABxAyAFx=Fyx=y