Metamath Proof Explorer


Theorem dff3

Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007)

Ref Expression
Assertion dff3 F:ABFA×BxA∃!yxFy

Proof

Step Hyp Ref Expression
1 fssxp F:ABFA×B
2 ffun F:ABFunF
3 fdm F:ABdomF=A
4 3 eleq2d F:ABxdomFxA
5 4 biimpar F:ABxAxdomF
6 funfvop FunFxdomFxFxF
7 2 5 6 syl2an2r F:ABxAxFxF
8 df-br xFFxxFxF
9 7 8 sylibr F:ABxAxFFx
10 fvex FxV
11 breq2 y=FxxFyxFFx
12 10 11 spcev xFFxyxFy
13 9 12 syl F:ABxAyxFy
14 funmo FunF*yxFy
15 2 14 syl F:AB*yxFy
16 15 adantr F:ABxA*yxFy
17 df-eu ∃!yxFyyxFy*yxFy
18 13 16 17 sylanbrc F:ABxA∃!yxFy
19 18 ralrimiva F:ABxA∃!yxFy
20 1 19 jca F:ABFA×BxA∃!yxFy
21 xpss A×BV×V
22 sstr FA×BA×BV×VFV×V
23 21 22 mpan2 FA×BFV×V
24 df-rel RelFFV×V
25 23 24 sylibr FA×BRelF
26 25 adantr FA×BxA∃!yxFyRelF
27 df-ral xA∃!yxFyxxA∃!yxFy
28 eumo ∃!yxFy*yxFy
29 28 imim2i xA∃!yxFyxA*yxFy
30 29 adantl FA×BxA∃!yxFyxA*yxFy
31 df-br xFyxyF
32 ssel FA×BxyFxyA×B
33 31 32 biimtrid FA×BxFyxyA×B
34 opelxp1 xyA×BxA
35 33 34 syl6 FA×BxFyxA
36 35 exlimdv FA×ByxFyxA
37 36 con3d FA×B¬xA¬yxFy
38 nexmo ¬yxFy*yxFy
39 37 38 syl6 FA×B¬xA*yxFy
40 39 adantr FA×BxA∃!yxFy¬xA*yxFy
41 30 40 pm2.61d FA×BxA∃!yxFy*yxFy
42 41 ex FA×BxA∃!yxFy*yxFy
43 42 alimdv FA×BxxA∃!yxFyx*yxFy
44 27 43 biimtrid FA×BxA∃!yxFyx*yxFy
45 44 imp FA×BxA∃!yxFyx*yxFy
46 dffun6 FunFRelFx*yxFy
47 26 45 46 sylanbrc FA×BxA∃!yxFyFunF
48 dmss FA×BdomFdomA×B
49 dmxpss domA×BA
50 48 49 sstrdi FA×BdomFA
51 breq1 x=zxFyzFy
52 51 eubidv x=z∃!yxFy∃!yzFy
53 52 rspccv xA∃!yxFyzA∃!yzFy
54 euex ∃!yzFyyzFy
55 vex zV
56 55 eldm zdomFyzFy
57 54 56 sylibr ∃!yzFyzdomF
58 53 57 syl6 xA∃!yxFyzAzdomF
59 58 ssrdv xA∃!yxFyAdomF
60 50 59 anim12i FA×BxA∃!yxFydomFAAdomF
61 eqss domF=AdomFAAdomF
62 60 61 sylibr FA×BxA∃!yxFydomF=A
63 df-fn FFnAFunFdomF=A
64 47 62 63 sylanbrc FA×BxA∃!yxFyFFnA
65 rnss FA×BranFranA×B
66 rnxpss ranA×BB
67 65 66 sstrdi FA×BranFB
68 67 adantr FA×BxA∃!yxFyranFB
69 df-f F:ABFFnAranFB
70 64 68 69 sylanbrc FA×BxA∃!yxFyF:AB
71 20 70 impbii F:ABFA×BxA∃!yxFy