Metamath Proof Explorer


Theorem dfon2

Description: On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers", American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011)

Ref Expression
Assertion dfon2 On=x|yyxTryyx

Proof

Step Hyp Ref Expression
1 df-on On=x|Ordx
2 tz7.7 OrdxTryyxyxyx
3 df-pss yxyxyx
4 2 3 bitr4di OrdxTryyxyx
5 4 exbiri OrdxTryyxyx
6 5 com23 OrdxyxTryyx
7 6 impd OrdxyxTryyx
8 7 alrimiv OrdxyyxTryyx
9 vex xV
10 dfon2lem3 xVyyxTryyxTrxzx¬zz
11 9 10 ax-mp yyxTryyxTrxzx¬zz
12 11 simpld yyxTryyxTrx
13 9 dfon2lem7 yyxTryyxtxuutTruut
14 13 ralrimiv yyxTryyxtxuutTruut
15 dfon2lem9 txuutTruutEFrx
16 psseq2 t=zutuz
17 16 anbi1d t=zutTruuzTru
18 elequ2 t=zutuz
19 17 18 imbi12d t=zutTruutuzTruuz
20 19 albidv t=zuutTruutuuzTruuz
21 psseq1 u=vuzvz
22 treq u=vTruTrv
23 21 22 anbi12d u=vuzTruvzTrv
24 elequ1 u=vuzvz
25 23 24 imbi12d u=vuzTruuzvzTrvvz
26 25 cbvalvw uuzTruuzvvzTrvvz
27 20 26 bitrdi t=zuutTruutvvzTrvvz
28 27 rspccv txuutTruutzxvvzTrvvz
29 psseq2 t=wutuw
30 29 anbi1d t=wutTruuwTru
31 elequ2 t=wutuw
32 30 31 imbi12d t=wutTruutuwTruuw
33 32 albidv t=wuutTruutuuwTruuw
34 psseq1 u=yuwyw
35 treq u=yTruTry
36 34 35 anbi12d u=yuwTruywTry
37 elequ1 u=yuwyw
38 36 37 imbi12d u=yuwTruuwywTryyw
39 38 cbvalvw uuwTruuwyywTryyw
40 33 39 bitrdi t=wuutTruutyywTryyw
41 40 rspccv txuutTruutwxyywTryyw
42 28 41 anim12d txuutTruutzxwxvvzTrvvzyywTryyw
43 vex zV
44 vex wV
45 43 44 dfon2lem5 vvzTrvvzyywTryywzwz=wwz
46 42 45 syl6 txuutTruutzxwxzwz=wwz
47 46 ralrimivv txuutTruutzxwxzwz=wwz
48 15 47 jca txuutTruutEFrxzxwxzwz=wwz
49 14 48 syl yyxTryyxEFrxzxwxzwz=wwz
50 dfwe2 EWexEFrxzxwxzEwz=wwEz
51 epel zEwzw
52 biid z=wz=w
53 epel wEzwz
54 51 52 53 3orbi123i zEwz=wwEzzwz=wwz
55 54 2ralbii zxwxzEwz=wwEzzxwxzwz=wwz
56 55 anbi2i EFrxzxwxzEwz=wwEzEFrxzxwxzwz=wwz
57 50 56 bitri EWexEFrxzxwxzwz=wwz
58 49 57 sylibr yyxTryyxEWex
59 df-ord OrdxTrxEWex
60 12 58 59 sylanbrc yyxTryyxOrdx
61 8 60 impbii OrdxyyxTryyx
62 61 abbii x|Ordx=x|yyxTryyx
63 1 62 eqtri On=x|yyxTryyx