Metamath Proof Explorer


Theorem dicvaddcl

Description: Membership in value of the partial isomorphism C is closed under vector sum. (Contributed by NM, 16-Feb-2014)

Ref Expression
Hypotheses dicvaddcl.l ˙ = K
dicvaddcl.a A = Atoms K
dicvaddcl.h H = LHyp K
dicvaddcl.u U = DVecH K W
dicvaddcl.i I = DIsoC K W
dicvaddcl.p + ˙ = + U
Assertion dicvaddcl K HL W H Q A ¬ Q ˙ W X I Q Y I Q X + ˙ Y I Q

Proof

Step Hyp Ref Expression
1 dicvaddcl.l ˙ = K
2 dicvaddcl.a A = Atoms K
3 dicvaddcl.h H = LHyp K
4 dicvaddcl.u U = DVecH K W
5 dicvaddcl.i I = DIsoC K W
6 dicvaddcl.p + ˙ = + U
7 simp1 K HL W H Q A ¬ Q ˙ W X I Q Y I Q K HL W H
8 eqid Base U = Base U
9 1 2 3 5 4 8 dicssdvh K HL W H Q A ¬ Q ˙ W I Q Base U
10 eqid LTrn K W = LTrn K W
11 eqid TEndo K W = TEndo K W
12 3 10 11 4 8 dvhvbase K HL W H Base U = LTrn K W × TEndo K W
13 12 eqcomd K HL W H LTrn K W × TEndo K W = Base U
14 13 adantr K HL W H Q A ¬ Q ˙ W LTrn K W × TEndo K W = Base U
15 9 14 sseqtrrd K HL W H Q A ¬ Q ˙ W I Q LTrn K W × TEndo K W
16 15 3adant3 K HL W H Q A ¬ Q ˙ W X I Q Y I Q I Q LTrn K W × TEndo K W
17 simp3l K HL W H Q A ¬ Q ˙ W X I Q Y I Q X I Q
18 16 17 sseldd K HL W H Q A ¬ Q ˙ W X I Q Y I Q X LTrn K W × TEndo K W
19 simp3r K HL W H Q A ¬ Q ˙ W X I Q Y I Q Y I Q
20 16 19 sseldd K HL W H Q A ¬ Q ˙ W X I Q Y I Q Y LTrn K W × TEndo K W
21 eqid Scalar U = Scalar U
22 eqid + Scalar U = + Scalar U
23 3 10 11 4 21 6 22 dvhvadd K HL W H X LTrn K W × TEndo K W Y LTrn K W × TEndo K W X + ˙ Y = 1 st X 1 st Y 2 nd X + Scalar U 2 nd Y
24 7 18 20 23 syl12anc K HL W H Q A ¬ Q ˙ W X I Q Y I Q X + ˙ Y = 1 st X 1 st Y 2 nd X + Scalar U 2 nd Y
25 1 2 3 11 5 dicelval2nd K HL W H Q A ¬ Q ˙ W X I Q 2 nd X TEndo K W
26 25 3adant3r K HL W H Q A ¬ Q ˙ W X I Q Y I Q 2 nd X TEndo K W
27 1 2 3 11 5 dicelval2nd K HL W H Q A ¬ Q ˙ W Y I Q 2 nd Y TEndo K W
28 27 3adant3l K HL W H Q A ¬ Q ˙ W X I Q Y I Q 2 nd Y TEndo K W
29 eqid oc K = oc K
30 1 29 2 3 lhpocnel K HL W H oc K W A ¬ oc K W ˙ W
31 30 3ad2ant1 K HL W H Q A ¬ Q ˙ W X I Q Y I Q oc K W A ¬ oc K W ˙ W
32 simp2 K HL W H Q A ¬ Q ˙ W X I Q Y I Q Q A ¬ Q ˙ W
33 eqid ι g LTrn K W | g oc K W = Q = ι g LTrn K W | g oc K W = Q
34 1 2 3 10 33 ltrniotacl K HL W H oc K W A ¬ oc K W ˙ W Q A ¬ Q ˙ W ι g LTrn K W | g oc K W = Q LTrn K W
35 7 31 32 34 syl3anc K HL W H Q A ¬ Q ˙ W X I Q Y I Q ι g LTrn K W | g oc K W = Q LTrn K W
36 eqid s TEndo K W , t TEndo K W h LTrn K W s h t h = s TEndo K W , t TEndo K W h LTrn K W s h t h
37 10 36 tendospdi2 2 nd X TEndo K W 2 nd Y TEndo K W ι g LTrn K W | g oc K W = Q LTrn K W 2 nd X s TEndo K W , t TEndo K W h LTrn K W s h t h 2 nd Y ι g LTrn K W | g oc K W = Q = 2 nd X ι g LTrn K W | g oc K W = Q 2 nd Y ι g LTrn K W | g oc K W = Q
38 26 28 35 37 syl3anc K HL W H Q A ¬ Q ˙ W X I Q Y I Q 2 nd X s TEndo K W , t TEndo K W h LTrn K W s h t h 2 nd Y ι g LTrn K W | g oc K W = Q = 2 nd X ι g LTrn K W | g oc K W = Q 2 nd Y ι g LTrn K W | g oc K W = Q
39 3 10 11 4 21 36 22 dvhfplusr K HL W H + Scalar U = s TEndo K W , t TEndo K W h LTrn K W s h t h
40 39 3ad2ant1 K HL W H Q A ¬ Q ˙ W X I Q Y I Q + Scalar U = s TEndo K W , t TEndo K W h LTrn K W s h t h
41 40 oveqd K HL W H Q A ¬ Q ˙ W X I Q Y I Q 2 nd X + Scalar U 2 nd Y = 2 nd X s TEndo K W , t TEndo K W h LTrn K W s h t h 2 nd Y
42 41 fveq1d K HL W H Q A ¬ Q ˙ W X I Q Y I Q 2 nd X + Scalar U 2 nd Y ι g LTrn K W | g oc K W = Q = 2 nd X s TEndo K W , t TEndo K W h LTrn K W s h t h 2 nd Y ι g LTrn K W | g oc K W = Q
43 eqid oc K W = oc K W
44 1 2 3 43 10 5 dicelval1sta K HL W H Q A ¬ Q ˙ W X I Q 1 st X = 2 nd X ι g LTrn K W | g oc K W = Q
45 44 3adant3r K HL W H Q A ¬ Q ˙ W X I Q Y I Q 1 st X = 2 nd X ι g LTrn K W | g oc K W = Q
46 1 2 3 43 10 5 dicelval1sta K HL W H Q A ¬ Q ˙ W Y I Q 1 st Y = 2 nd Y ι g LTrn K W | g oc K W = Q
47 46 3adant3l K HL W H Q A ¬ Q ˙ W X I Q Y I Q 1 st Y = 2 nd Y ι g LTrn K W | g oc K W = Q
48 45 47 coeq12d K HL W H Q A ¬ Q ˙ W X I Q Y I Q 1 st X 1 st Y = 2 nd X ι g LTrn K W | g oc K W = Q 2 nd Y ι g LTrn K W | g oc K W = Q
49 38 42 48 3eqtr4rd K HL W H Q A ¬ Q ˙ W X I Q Y I Q 1 st X 1 st Y = 2 nd X + Scalar U 2 nd Y ι g LTrn K W | g oc K W = Q
50 3 10 11 36 tendoplcl K HL W H 2 nd X TEndo K W 2 nd Y TEndo K W 2 nd X s TEndo K W , t TEndo K W h LTrn K W s h t h 2 nd Y TEndo K W
51 7 26 28 50 syl3anc K HL W H Q A ¬ Q ˙ W X I Q Y I Q 2 nd X s TEndo K W , t TEndo K W h LTrn K W s h t h 2 nd Y TEndo K W
52 41 51 eqeltrd K HL W H Q A ¬ Q ˙ W X I Q Y I Q 2 nd X + Scalar U 2 nd Y TEndo K W
53 fvex 1 st X V
54 fvex 1 st Y V
55 53 54 coex 1 st X 1 st Y V
56 ovex 2 nd X + Scalar U 2 nd Y V
57 1 2 3 43 10 11 5 55 56 dicopelval K HL W H Q A ¬ Q ˙ W 1 st X 1 st Y 2 nd X + Scalar U 2 nd Y I Q 1 st X 1 st Y = 2 nd X + Scalar U 2 nd Y ι g LTrn K W | g oc K W = Q 2 nd X + Scalar U 2 nd Y TEndo K W
58 57 3adant3 K HL W H Q A ¬ Q ˙ W X I Q Y I Q 1 st X 1 st Y 2 nd X + Scalar U 2 nd Y I Q 1 st X 1 st Y = 2 nd X + Scalar U 2 nd Y ι g LTrn K W | g oc K W = Q 2 nd X + Scalar U 2 nd Y TEndo K W
59 49 52 58 mpbir2and K HL W H Q A ¬ Q ˙ W X I Q Y I Q 1 st X 1 st Y 2 nd X + Scalar U 2 nd Y I Q
60 24 59 eqeltrd K HL W H Q A ¬ Q ˙ W X I Q Y I Q X + ˙ Y I Q