Metamath Proof Explorer


Theorem dig2nn1st

Description: The first (relevant) digit of a positive integer in a binary system is 1. (Contributed by AV, 26-May-2020)

Ref Expression
Assertion dig2nn1st N#b N 1 digit2 N = 1

Proof

Step Hyp Ref Expression
1 2nn 2
2 1 a1i N2
3 blennnelnn N#b N
4 nnm1nn0 #b N #b N10
5 3 4 syl N#b N 1 0
6 nnre NN
7 nnnn0 NN0
8 7 nn0ge0d N0N
9 elrege0 N0+∞N0N
10 6 8 9 sylanbrc NN0+∞
11 nn0digval 2#b N 1 0 N0+∞ #b N1digit2N=N2#b N1mod2
12 2 5 10 11 syl3anc N#b N 1 digit2 N = N2#b N1mod2
13 n2dvds1 ¬21
14 blennn N#b N = log2N+1
15 14 oveq1d N#b N 1 = log2N+1-1
16 2z 2
17 uzid 222
18 16 17 ax-mp 22
19 nnrp NN+
20 relogbzcl 22N+log2N
21 18 19 20 sylancr Nlog2N
22 21 flcld Nlog2N
23 22 zcnd Nlog2N
24 pncan1 log2Nlog2N+1-1=log2N
25 23 24 syl Nlog2N+1-1=log2N
26 15 25 eqtrd N#b N 1 = log2N
27 26 oveq2d N2#b N 1 = 2log2N
28 27 oveq2d NN2#b N 1 = N2log2N
29 28 fveq2d NN2#b N 1 = N2log2N
30 fldivexpfllog2 N+N2log2N=1
31 19 30 syl NN2log2N=1
32 29 31 eqtrd NN2#b N 1 = 1
33 32 breq2d N2N2#b N 1 21
34 13 33 mtbiri N¬2N2#b N 1
35 2re 2
36 35 a1i N2
37 36 5 reexpcld N2#b N 1
38 2cnd N2
39 2ne0 20
40 39 a1i N20
41 5 nn0zd N#b N 1
42 38 40 41 expne0d N2#b N 1 0
43 6 37 42 redivcld NN2#b N 1
44 43 flcld NN2#b N 1
45 mod2eq1n2dvds N2#b N 1 N2#b N1mod2=1¬2N2#b N1
46 44 45 syl NN2#b N 1 mod 2 = 1 ¬2N2#b N1
47 34 46 mpbird NN2#b N 1 mod 2 = 1
48 12 47 eqtrd N#b N 1 digit2 N = 1