Metamath Proof Explorer


Theorem dirith2

Description: Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to N . Theorem 9.4.1 of Shapiro, p. 375. (Contributed by Mario Carneiro, 30-Apr-2016) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum.u U=UnitZ
rpvmasum.b φAU
rpvmasum.t T=L-1A
Assertion dirith2 φT

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum.u U=UnitZ
5 rpvmasum.b φAU
6 rpvmasum.t T=L-1A
7 nnex V
8 inss1 T
9 prmssnn
10 8 9 sstri T
11 ssdomg VTT
12 7 10 11 mp2 T
13 12 a1i φT
14 logno1 ¬x+logx𝑂1
15 3 adantr φTFinN
16 15 phicld φTFinϕN
17 16 nnred φTFinϕN
18 17 adantr φTFinx+ϕN
19 simpr φTFinTFin
20 inss2 1xTT
21 ssfi TFin1xTT1xTFin
22 19 20 21 sylancl φTFin1xTFin
23 elinel2 n1xTnT
24 simpr φTFinnTnT
25 10 24 sselid φTFinnTn
26 25 nnrpd φTFinnTn+
27 relogcl n+logn
28 26 27 syl φTFinnTlogn
29 28 25 nndivred φTFinnTlognn
30 23 29 sylan2 φTFinn1xTlognn
31 22 30 fsumrecl φTFinn1xTlognn
32 31 adantr φTFinx+n1xTlognn
33 rpssre +
34 17 recnd φTFinϕN
35 o1const +ϕNx+ϕN𝑂1
36 33 34 35 sylancr φTFinx+ϕN𝑂1
37 33 a1i φTFin+
38 1red φTFin1
39 19 29 fsumrecl φTFinnTlognn
40 log1 log1=0
41 25 nnge1d φTFinnT1n
42 1rp 1+
43 logleb 1+n+1nlog1logn
44 42 26 43 sylancr φTFinnT1nlog1logn
45 41 44 mpbid φTFinnTlog1logn
46 40 45 eqbrtrrid φTFinnT0logn
47 28 26 46 divge0d φTFinnT0lognn
48 20 a1i φTFin1xTT
49 19 29 47 48 fsumless φTFinn1xTlognnnTlognn
50 49 adantr φTFinx+1xn1xTlognnnTlognn
51 37 32 38 39 50 ello1d φTFinx+n1xTlognn𝑂1
52 0red φTFin0
53 23 47 sylan2 φTFinn1xT0lognn
54 22 30 53 fsumge0 φTFin0n1xTlognn
55 54 adantr φTFinx+0n1xTlognn
56 32 52 55 o1lo12 φTFinx+n1xTlognn𝑂1x+n1xTlognn𝑂1
57 51 56 mpbird φTFinx+n1xTlognn𝑂1
58 18 32 36 57 o1mul2 φTFinx+ϕNn1xTlognn𝑂1
59 17 31 remulcld φTFinϕNn1xTlognn
60 59 recnd φTFinϕNn1xTlognn
61 60 adantr φTFinx+ϕNn1xTlognn
62 relogcl x+logx
63 62 adantl φTFinx+logx
64 63 recnd φTFinx+logx
65 1 2 3 4 5 6 rplogsum φx+ϕNn1xTlognnlogx𝑂1
66 65 adantr φTFinx+ϕNn1xTlognnlogx𝑂1
67 61 64 66 o1dif φTFinx+ϕNn1xTlognn𝑂1x+logx𝑂1
68 58 67 mpbid φTFinx+logx𝑂1
69 68 ex φTFinx+logx𝑂1
70 14 69 mtoi φ¬TFin
71 nnenom ω
72 sdomentr TωTω
73 71 72 mpan2 TTω
74 isfinite2 TωTFin
75 73 74 syl TTFin
76 70 75 nsyl φ¬T
77 bren2 TT¬T
78 13 76 77 sylanbrc φT