Metamath Proof Explorer


Theorem ditgcl

Description: Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypotheses ditgcl.x φX
ditgcl.y φY
ditgcl.a φAXY
ditgcl.b φBXY
ditgcl.c φxXYCV
ditgcl.i φxXYC𝐿1
Assertion ditgcl φABCdx

Proof

Step Hyp Ref Expression
1 ditgcl.x φX
2 ditgcl.y φY
3 ditgcl.a φAXY
4 ditgcl.b φBXY
5 ditgcl.c φxXYCV
6 ditgcl.i φxXYC𝐿1
7 elicc2 XYAXYAXAAY
8 1 2 7 syl2anc φAXYAXAAY
9 3 8 mpbid φAXAAY
10 9 simp1d φA
11 elicc2 XYBXYBXBBY
12 1 2 11 syl2anc φBXYBXBBY
13 4 12 mpbid φBXBBY
14 13 simp1d φB
15 simpr φABAB
16 15 ditgpos φABABCdx=ABCdx
17 1 rexrd φX*
18 9 simp2d φXA
19 iooss1 X*XAABXB
20 17 18 19 syl2anc φABXB
21 2 rexrd φY*
22 13 simp3d φBY
23 iooss2 Y*BYXBXY
24 21 22 23 syl2anc φXBXY
25 20 24 sstrd φABXY
26 25 sselda φxABxXY
27 26 5 syldan φxABCV
28 ioombl ABdomvol
29 28 a1i φABdomvol
30 25 29 5 6 iblss φxABC𝐿1
31 27 30 itgcl φABCdx
32 31 adantr φABABCdx
33 16 32 eqeltrd φABABCdx
34 simpr φBABA
35 14 adantr φBAB
36 10 adantr φBAA
37 34 35 36 ditgneg φBAABCdx=BACdx
38 13 simp2d φXB
39 iooss1 X*XBBAXA
40 17 38 39 syl2anc φBAXA
41 9 simp3d φAY
42 iooss2 Y*AYXAXY
43 21 41 42 syl2anc φXAXY
44 40 43 sstrd φBAXY
45 44 sselda φxBAxXY
46 45 5 syldan φxBACV
47 ioombl BAdomvol
48 47 a1i φBAdomvol
49 44 48 5 6 iblss φxBAC𝐿1
50 46 49 itgcl φBACdx
51 50 negcld φBACdx
52 51 adantr φBABACdx
53 37 52 eqeltrd φBAABCdx
54 10 14 33 53 lecasei φABCdx