Metamath Proof Explorer


Theorem divalglem5

Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011) (Revised by AV, 2-Oct-2020)

Ref Expression
Hypotheses divalglem0.1 N
divalglem0.2 D
divalglem1.3 D0
divalglem2.4 S=r0|DNr
divalglem5.5 R=supS<
Assertion divalglem5 0RR<D

Proof

Step Hyp Ref Expression
1 divalglem0.1 N
2 divalglem0.2 D
3 divalglem1.3 D0
4 divalglem2.4 S=r0|DNr
5 divalglem5.5 R=supS<
6 1 2 3 4 divalglem2 supS<S
7 5 6 eqeltri RS
8 oveq2 x=RNx=NR
9 8 breq2d x=RDNxDNR
10 oveq2 r=xNr=Nx
11 10 breq2d r=xDNrDNx
12 11 cbvrabv r0|DNr=x0|DNx
13 4 12 eqtri S=x0|DNx
14 9 13 elrab2 RSR0DNR
15 7 14 mpbi R0DNR
16 15 simpli R0
17 16 nn0ge0i 0R
18 nnabscl DD0D
19 2 3 18 mp2an D
20 19 nngt0i 0<D
21 0re 0
22 zcn DD
23 2 22 ax-mp D
24 23 abscli D
25 21 24 ltnlei 0<D¬D0
26 20 25 mpbi ¬D0
27 4 ssrab3 S0
28 nn0uz 0=0
29 27 28 sseqtri S0
30 nn0abscl DD0
31 2 30 ax-mp D0
32 nn0sub2 D0R0DRRD0
33 31 16 32 mp3an12 DRRD0
34 15 a1i DRR0DNR
35 nn0z R0R
36 1z 1
37 1 2 divalglem0 R1DNRDNR1D
38 36 37 mpan2 RDNRDNR1D
39 24 recni D
40 39 mullidi 1D=D
41 40 oveq2i R1D=RD
42 41 oveq2i NR1D=NRD
43 42 breq2i DNR1DDNRD
44 38 43 imbitrdi RDNRDNRD
45 35 44 syl R0DNRDNRD
46 45 imp R0DNRDNRD
47 34 46 syl DRDNRD
48 oveq2 x=RDNx=NRD
49 48 breq2d x=RDDNxDNRD
50 49 13 elrab2 RDSRD0DNRD
51 33 47 50 sylanbrc DRRDS
52 infssuzle S0RDSsupS<RD
53 29 51 52 sylancr DRsupS<RD
54 5 53 eqbrtrid DRRRD
55 34 simpld DRR0
56 55 nn0red DRR
57 lesub RRDRRDDRR
58 24 57 mp3an3 RRRRDDRR
59 56 56 58 syl2anc DRRRDDRR
60 56 recnd DRR
61 60 subidd DRRR=0
62 61 breq2d DRDRRD0
63 59 62 bitrd DRRRDD0
64 54 63 mpbid DRD0
65 26 64 mto ¬DR
66 16 nn0rei R
67 66 24 ltnlei R<D¬DR
68 65 67 mpbir R<D
69 17 68 pm3.2i 0RR<D