Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011) (Revised by AV, 2-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divalglem0.1 | |
|
divalglem0.2 | |
||
divalglem1.3 | |
||
divalglem2.4 | |
||
divalglem5.5 | |
||
Assertion | divalglem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalglem0.1 | |
|
2 | divalglem0.2 | |
|
3 | divalglem1.3 | |
|
4 | divalglem2.4 | |
|
5 | divalglem5.5 | |
|
6 | 1 2 3 4 | divalglem2 | |
7 | 5 6 | eqeltri | |
8 | oveq2 | |
|
9 | 8 | breq2d | |
10 | oveq2 | |
|
11 | 10 | breq2d | |
12 | 11 | cbvrabv | |
13 | 4 12 | eqtri | |
14 | 9 13 | elrab2 | |
15 | 7 14 | mpbi | |
16 | 15 | simpli | |
17 | 16 | nn0ge0i | |
18 | nnabscl | |
|
19 | 2 3 18 | mp2an | |
20 | 19 | nngt0i | |
21 | 0re | |
|
22 | zcn | |
|
23 | 2 22 | ax-mp | |
24 | 23 | abscli | |
25 | 21 24 | ltnlei | |
26 | 20 25 | mpbi | |
27 | 4 | ssrab3 | |
28 | nn0uz | |
|
29 | 27 28 | sseqtri | |
30 | nn0abscl | |
|
31 | 2 30 | ax-mp | |
32 | nn0sub2 | |
|
33 | 31 16 32 | mp3an12 | |
34 | 15 | a1i | |
35 | nn0z | |
|
36 | 1z | |
|
37 | 1 2 | divalglem0 | |
38 | 36 37 | mpan2 | |
39 | 24 | recni | |
40 | 39 | mullidi | |
41 | 40 | oveq2i | |
42 | 41 | oveq2i | |
43 | 42 | breq2i | |
44 | 38 43 | imbitrdi | |
45 | 35 44 | syl | |
46 | 45 | imp | |
47 | 34 46 | syl | |
48 | oveq2 | |
|
49 | 48 | breq2d | |
50 | 49 13 | elrab2 | |
51 | 33 47 50 | sylanbrc | |
52 | infssuzle | |
|
53 | 29 51 52 | sylancr | |
54 | 5 53 | eqbrtrid | |
55 | 34 | simpld | |
56 | 55 | nn0red | |
57 | lesub | |
|
58 | 24 57 | mp3an3 | |
59 | 56 56 58 | syl2anc | |
60 | 56 | recnd | |
61 | 60 | subidd | |
62 | 61 | breq2d | |
63 | 59 62 | bitrd | |
64 | 54 63 | mpbid | |
65 | 26 64 | mto | |
66 | 16 | nn0rei | |
67 | 66 24 | ltnlei | |
68 | 65 67 | mpbir | |
69 | 17 68 | pm3.2i | |